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1  Introduction 
 

In this work we develop a physical model which describes behaviour of the gravimetric nano-flow 

facility of DTI. The aim of this model is to predict effects which occur in the system in case when the 

flow coming into the system is oscillating.  

The model covers evolution of the main disturbing forces which occur during weighing, namely 

capillary forces between the tube inserted into the beaker and interfaces of fluids in the beaker (air-oil, 

oil-water) and buoyancy force between the tube and the fluids. Influence of these forces to the scale 

reading is predicted too. 

The physical model is implemented into Matlab and a difference between the real oscillating flowrate 

and its apparent value obtained by time derivative of scale reading is computed numerically. 

Time needed for stabilization of the system is discussed too.  

 

2  Physical model 
 

In [1] we found that the leading error sources during a weighing of liquid in a beaker with a tube 

inserted inside the fluid are the capillary forces acting at contact lines of liquid to liquid interfaces with 

the tube and a buoyancy force acting to the tube. Determination of these forces requires knowledge of 

evolution of shape of the interfaces during the pulsating flow. 

In the following work we assume that even for pulsating flow the surface shape is given by equation 

for an equilibrium case with no flow where the dynamics enters only through a dynamic behaviour of 

the contact angles which depend on a velocity of the contact line between the interface and the tube.  

This assumption is correct if 1) the fluid velocity field in surroundings of the interface does not affect 

the interface shape significantly and 2) reaction of the surface shape to a change of contact angle is 

almost immediate, or more precisely a stabilisation time of the surface shape after a step change in 

contact angles from values corresponding to a constant flowrate Q to values corresponding to Q+AQ, 

where AQ is a flowrate amplitude of the considered pulsating flow, is much smaller than a period of the 

pulsating flow. 

In this case the surface shape is given as a solution of equation (3.8) from [1]   

 

    ( )  
 

 

 

  
( 

    ⁄

√  (    ⁄ ) 
)                                               (   ) 

 

where   (       )    is a constant with     being a density of fluid above the interface,     

being a density of fluid below the interface,   being a gravitational acceleration and   being a surface 

tension of the interface. The function f(r) describes a shape of the interface. This function gives height 

of the interface point at radius r above certain level. In [1] the level was selected as the contact point of 

the interface with the tube such that at the tube we have f(r) = 0. Here it will be more convenient to 

choose the level as a fixed point without reference to the interface – e.g. as a bottom of the beaker (see 

Fig. 1). If we do so the constant C is given as  
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where a is the outer radius of the tube,    
  is a pressure of the fluid immediately above the contact line 

at the tube and    
  is a pressure of the fluid immediately below the contact line at the tube.   
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Fig. 1 

 

If we consider densities of water               of oil              and of air    
         , surface tensions              ,               and             for oil-water 

interface we obtain                 and for air-oil interface we get                   
For a volume under the interface (the light blue in Fig. 1) we have  
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and again as in [1] by integrating the equation (2.1) we obtain  
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where the angles  ( ) are defined in Fig. 1 and R is the inner radius of the beaker. The dimensions of 

the setup are a = 0.4 mm and R = 10 mm. The angles   are related to contact angles as  ( )  
 ( )      and  ( )       ( ). The term  (     ) is just surface of the cross-section of the 

beaker without the cross-section of the tube and we denote it  
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Therefore the parameter C can be expressed from (2.4) as 
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The strategy to obtain the evolution of capillary and buoyancy forces in case of pulsating flow will be 

following. If we know the volume under the interface V and the contact angles  ( ) and  ( ) we can 

use the equation (2.6) to calculate the parameter C and then solve the equation (2.1) for boundary 

conditions  
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In the following we will denote  ( )    and  ( )    . The solution of equation (2.1) for given 

volume and contact angles we denote  (               ) where we write cosines of contact angles 

instead of contact angles themselves since it will be convenient as we will see.  

Next we consider a time dependent volume       ( ) where    is initial value of volume under 

the interface and  ( ) is a time dependent change of volume in the beaker. Since the interface for 

given contact angles and different volumes is just shifted in height without change in shape we have 
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Now we introduce the dependence of contact angles on the velocity of the contact line between the 

interface and the tube. Some theoretical and experimental models of this dependence can be found e.g. 

in [2]. All the relations mentioned in this reference are of form              ( ̇) where   is the 

equilibrium contact angle for the static case and  ( ̇) is some function of the contact line velocity 

which is given as a time derivative of height of the contact line in our case. In our situation we have 

two contact lines at one interface and we can write 
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where the indices 1 relates to the tube wall whereas the indices 2 relates to the beaker wall.  

The height of the contact lines as a function of time is in our case given as 
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If the functions  (                ) and  (                ) are known these two equations 

can be considered as a set of differential equations for unknown functions   ( ),   ( ). Solving these 

equations we obtain all the information needed for determining the capillary and buoyancy forces as 

we will see later. 

The functions  (                ) and  (                ) have to be obtained numerically by 

solving the equation (2.1) and therefore it is difficult to handle with them in further computations. 

However, we can suppose that the corrections   ( ̇ ) and   ( ̇ ) are small enough to make a linear 

expansion of the functions  (                ) and  (                ) in variables       

and      . Let us denote 
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With this notation we can write the linear expansion of the equations (2.10) as 
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We can introduce quantities  
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and rewrite the equations (2.12) as explicit expressions for the derivative terms 
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The equations (2.15) should be solved for  ̅ ( ) and  ̅ ( ) with initial conditions  ̅ ( )   ̅ ( )   . 

The function  ( ) in (2.15) describes the pulsating flow and is given as an input. The coefficients    , 

   ,    ,     must be determined numerically by solving the equation (2.1) for various contact angles. 

If we want to obtain the variables   ( ),   ( ) we need to find also the coefficients    ,     by 

solving the equation (2.1) numerically. For determining these coefficients we need to know the 

equilibrium contact angles    and     which have to be determined by experiment or from literature.  

Regarding the functions    and    there are several models how they should look like. The models are 

summarised in [2]. From the models mentioned in this reference the best theoretical model is the 

Blake model which gives  

 ( ̇)   
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where A, D are constants given by some molecular characteristics of the fluids which are difficult to 

determine and therefore it is usually necessary to find them by fitting the model to some experimental 

data.  

The best experimental model mentioned in [2] is the Seeberg model. The formula for Seeberg model 

in [2] is however valid probably only for air-liquid interfaces and gives 
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where   is the surface tension and   is a dynamical viscosity or the liquid. This formula is based on 

experimental data in a range  

     
  ̇

 
                                                                          (    ) 

 

The functions for Blake and Seeberg model are different. They can be fitted in certain range of  ̇ but 

especially for small values of  ̇ the difference can be significant because the derivative   ( ̇)   ̇ for 

 ̇ approaching zero gives finite value for Blake model but for Seeberg model it approaches infinity. 

Therefore it is important to have some experimental data from our own setup. 

 

Now we will show how to calculate the capillary and buoyancy forces. We choose a z-axis oriented in 

the same way as the h-axis in Fig. 1 and we evaluate the z-component of the capillary and buoyancy 

forces acting to our system (as defined by Fig. 1 of [1]). 

Let us suppose that we solved the equations (2.15) for both interfaces air-oil (AO) and oil-water (OW). 

Thus, we know the functions  ̅   ( ),  ̅   ( ),  ̅   ( ) and  ̅   ( ) and we know their time 

derivatives. From relations (2.9) we can calculate the cosines of contact angles.  

The z-components of the capillary forces by which the tube acts to the liquids then are 
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The z-component of the buoyancy force acting to the system is expressed by formula (4.5) of [1]. The 

formula reads 
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where        
    

  is a pressure step when we pass through the air-oil interface at the wall of the 

tube,        
    

  is a pressure step when we pass through the oil-water interface at the wall of 

the tube,   ,    are defined in Fig. 2,   ,   ,    are densities of oil, water and air and    is volume 

of the beaker plus the liquid inside the beaker plus the part of the tube which is inserted into the liquid. 

Now we have to express the formula (2.20) in terms of the functions  ̅   ( ),  ̅   ( ),  ̅   ( ), 

 ̅   ( ) and their time derivatives. The way of expressing      and      is the following. First we 

use the formulas (2.9) to express the      ( ) and      ( ). Then we use the formula (2.6) to express 

the parameter C which is related to the pressure step by formula (2.2). After some algebra we obtain 

the following formula for a pressure step 
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which for particular interfaces in terms of functions  ̅   ( ),  ̅   ( ),  ̅   ( ),  ̅   ( ) reads 
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The heights    and    in formula (2.20) can be expressed as 

 

                    ̅   ( )                                                         (    ) 

                    ̅   ( )         ̅   ( ) 
 

where      is distance of the tip of the tube from bottom of the beaker. 

Finally the volume    reads 
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where    is volume of the beaker itself – i.e. the volume of glass of the beaker.   
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Fig. 2 

 

The z-component of the gravitational force acting to the system is 
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where   is a mass of the system,    is a mass of the beaker itself and    is the volume of oil which is 

constant. The real mass flowrate to the system is given as 

 

  
  

  
  

 

 

   

  
                                                             (    ) 

 

However, the mass indicated by the scale is not the real mass  . The mass indicated by the scale    is 

given as  

    
 

 
                                                                    (    ) 

 

where    is z-component of the total force acting to the system, i.e. 
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Therefore the apparent flowrate reads 
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In the formula (2.29) we can recognize how the flowrate    computed directly from the scale 

indication differs from the real flowrate  . Our task will be to compute this difference for the 

particular situations of our interest, e.g. for the pulsating flow. 

We can also define apparent flowrates due to the capillary and buoyancy forces as  
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3  Numerical computations with MATLAB 

3.1  Determining the coefficients cij and h0i 
 

In order to do the calculation we have to determine the coefficients (2.11) first. For computing the 

coefficients     and     we have to solve the equation (2.1) for a given volume    and for given 

values of the equilibrium contact angles     and    . In the following calculation we will consider the 

following values of the parameters 

 

                                                     

                                                         

 

corresponding to a volume of oil layer           . The numerical solutions of equation (2.1) in 

MATLAB then give 

                                    

                                     
 

If we want to determine the parameters cij we have to solve the equation (2.1) for contact angles 

variating around their equilibrium values and look how the interface heights at the walls change and 

from this we can determine the derivatives. A computation in MATLAB gives 

 

                                                                             

                                                                                 
 

In Fig. 3 – 6 below there are graphs of the functions  (                ) and 

 (                ) for both oil-water and air-oil interfaces for a given value of   . From the 

graphs we can see that the linear expansion considered in (2.12) is reasonable. 

 
 

Fig. 3 Height of oil-water interface at tube wall as a function of contact angles for fixed volume 
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Fig. 4 Height of oil-water interface at beaker wall as a function of contact angles for fixed volume 

 

 
 

Fig. 5 Height of air-oil interface at tube wall as a function of contact angles for fixed volume 
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Fig. 6 Height of air-oil interface at beaker wall as a function of contact angles for fixed volume 

 

 

3.2  Contact angle model for numerical computation 
 

Before solving the differential equations (2.15) we need to specify the model of contact angle as a 

function of interface velocity.  

Since we do not know the parameters of the Blake model we use the Seeberg model of contact angle. 

For air-oil interface we need to know the dynamic viscosity of paraffin oil which is around 0.23 Pa.s, 

the surface tension of air-oil interface which is around 0.026 N/m and the equilibrium contact angles at 

the tube and at the wall which both are around 45°.  

Since the Seeberg model is valid for liquid-air interface we have to make some assumptions for the 

water-oil interface. Since the viscosity of oil is much larger then viscosity of water we assume that the 

contact angle behaves like if there would be air instead of water. For the water-oil interface we 

therefore take the viscosity of oil in the Seeberg model and we take the value of surface tension of the 

water-oil interface of 0.041 N/m. Moreover we assume that for advancing contact angle starting from 

equilibrium value θ0 the change of angle due to interface motion has just opposite sign as it would be 

for receding contact angle starting from equilibrium contact angle 90°- θ0. 

The value of equilibrium contact angle of the water-oil interface at the tube we consider to be 130° and 

at the wall we take 45°. 

Example of dependency of change of cosine of contact angle with velocity of interface is in Fig.7. The 

figure depicts the Seeberg model curve and the Blake model for air-oil-tube interface. The parameters 

of the Blake curve were obtained by fitting to the Seeberg curve at velocity 0.89 µm/s which 

corresponds to a flowrate of 1 mL/h.   

 



11 
 

 
 

Fig. 7 Graphs of Seeberg and Blake model for air-oil-tube interface. 

 

3.3  Stabilization of the measured flowrate 
 

Before we proceed to the pulsating flow we will discuss certain properties of the solution which arise 

already for a constant flowrate and appear also for the pulsating flow. 

When water starts to flow to the beaker, i.e. the flowrate is changed from zero value to some nonzero 

constant value, the contact angles of air-oil and water-oil interfaces with the tube start to evolve from 

their equilibrium values and it takes certain time before the contact angles stabilize at different values 

corresponding to certain velocity of the interfaces. During this process also the velocity of the 

interfaces evolve from zero value to certain stabilized value. 

After the interface velocities and contact angles are stabilized the capillary forces acting between the 

interfaces and the tube are not changing anymore and they do not contribute to slope of the scale 

reading (they are just offset of the scale reading). At this stage the slope of the scale reading is shifted 

just by a contribution of buoyancy force which is growing with constant rate during the process. 

It is necessary to know the stabilisation time since a calibration of a meter can start only after this time 

passes.  
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Fig.8 Evolution of velocity of interfaces for a flowrate of 1 mL/h. 

 

 
Fig.9 Evolution of apparent flowrate contributions caused by capillary and buoyancy forces for 

flowrate of 1 mL/h.  
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Fig.10 Evolution of the measured flowrate as compared to the real value of flowrate which in this case 

is 1 mL/h corresponding to 0.277 mg/s for density of 997 kg/m
3
.  

  

Evolution of velocity of all interfaces for flowrate of 1 mL/h is depicted in Fig. 8. We see that after 

some time all velocities tend to certain value which is for all interfaces the same. This value 

corresponds to a velocity of surface in stage when the surface shape is not changing anymore. 

Evolution of contributions of capillary forces and buoyancy force to the measured flowrate for real 

flowrate 1 mL/h is depicted in Fig. 9. We see that the capillary contribution tends to zero after some 

time which corresponds to the stabilized contact angles. The buoyancy contribution tends to certain 

nonzero value. 

Evolution of the measured flowrate as compared to the real flowrate of 1 mL/h is depicted in Fig. 10. 

For flowrates others then 1 mL/h the curves look qualitatively the same just in different scales. 

 

Now we will express the stabilisation times quantitatively. The measured flowrate converges to certain 

value which we will denote    . We consider the measured flowrate as stabilized if its value does not 

differ from     by more than 0.1 %. The stabilization time is then the time needed to obtain the 

stabilized flowrate, i.e. the stabilisation time    is the smallest time such that for      we have  

 

   
         

    
                                                           (     ) 

 

The value of 0.1 % was chosen to be an order of magnitude smaller than the expected uncertainty of a 

flow measurement. 

The converged value     is given by the real flowrate corrected by the buoyancy contribution. The 

capillary forces do not contribute to the converged flowrate since they do not change at this stage. 

Therefore we have 
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where    is given by (2.20). In the formula (2.20) the pressure jumps also do not change with time as 

well as the thickness of the oil layer. Since the interface shapes are not changing at this stage the 

velocity of the interfaces is given just by a ratio of volume flowrate and area of the open surface. In 

terms of the real mass flowrate   we can write  
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Using these formulas we arrive to the following expression for the converged measured flowrate  
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Now we want to find the time when the measured flowrate starts to differ from the flowrate given by 

(3.3.4) only by 0.1 %. These times have been determined numerically for various flowrates and are 

summarised in Tab. 1. 

 

QV (mL/h) 0.001 0.01 0.1 1 10 

ts (s) 4906 1290 339 89.3 23.5 

  

Tab. 1 Stabilisation times for various flowrates. 

 

3.4  Scaling of the solutions  
 

We can even derive a formula describing how the stabilisation time depends on flowrate. The 

derivation is based on scaling properties of solutions of the equations (2.15) with the Seeberg model of 

dynamic contact angle (2.17). More generally we can consider the differential equations (2.15) with a 

model of dynamic contact angle similar to the Seeberg one but with general constants       

 

 ( ̇)     (  ̇)
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First we will prove the following lemma. 

 

Lemma 1. Let    ( )    ( ) be a solution of system of equations (2.15) with   function given by 

(3.4.1), with certain volume growth function  ( )    ( ) and with initial conditions    ( )  
     ( )    (we drop bars above   here). Then functions    ( )     ( ) related to the functions 

   ( )    ( ) as 

 

   ( )       ( 
    )                                                          (     ) 

   ( )       ( 
    ) 

 

where λ is a constant are solution of the system (2.15) with   function given by (3.4.1), with volume 

growth function  

 

 ( )      ( 
    )                                                                (     ) 

 

and initial conditions    ( )        ( )   .  

 

Proof. The system of differential equations (2.15) with the model of dynamic contact angle (3.4.1) can 

be written as (we drop the bars above  ) 
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To show that functions    ( )     ( ) given by (3.4.2) are a solution of this system we insert these 

functions and (3.4.3) into these equations. We denote        . Thus we obtain 
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This leads to 

 

   (  

    

  
)
 

 
 

             
(      ( )        ( )  (       )  ( )  ⁄ ) 

 

   (  

    

  
)
 

 
  

             

(      ( )        ( )  (       )   ( )  ⁄ )       

 

This already proves the lemma since we supposed that    ( )    ( ) is solution of the system with 

 ( )    ( ). ■ 

 

Now let us check how the real and measured flowrate change after transformation (3.4.2), (3.4.3). For 

the real volumetric flowrate we just need to do a time derivative of the formula (3.4.3). We obtain 
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     ( 

    )                        (     ) 

 

For the real mass flowrate we just multiply this equation by water density and therefore we obtain the 

same transformation formula 

 

  ( )     ( 
    )                                                              (     ) 

 

The difference between measured and real flowrate is given by the time derivatives of the buoyancy 

force and the capillary forces (see (2.29)). The buoyancy force is given by (2.20) and the capillary 

forces are given by (2.19). We see that these forces are given as linear combinations of the volume 

growth function  ( ) and the interface height functions     ( )     ( )     ( )     ( ). The 

transformation formula of the interface height functions (3.4.2) is the same as the transformation 

formula for volume growth function (3.4.3). Therefore, also the time derivative of the interface height 

functions transforms according to the same formula as the time derivative of the volume growth 

function or in other words according to the same formula as volumetric flowrate (3.4.4) (or mass 

flowrate (3.4.5)). 

Therefore the apparent flowrates given by capillary and buoyancy forces (2.30), (2.31), (2.32) 

transforms according to the same formula as the real mass flowrate (3.4.5). And, therefore, also the 

measured mass flowrate transforms according to the same formula. The transformation reads 
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Now we can use the lemma 1 to obtain some information on how stabilisation times change with 

flowrate. In case of a constant real flowrate the measured flowrate converges to certain value with 

increasing time as we already discussed. This value can be given as 

 

       
   

  ( )                                                                 (     ) 

 

Under the transformation (3.4.6) this value transforms as  

 

                                                                              (     ) 

 

The relative deviation of instantaneous measured flowrate from the converged flowrate given by 

(3.3.1) transforms as follows 
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Transformation of the stabilization time follows from the following equation 
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Using (3.4.9) we obtain 
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and therefore  

 

                                                                                 (      ) 
 

We consider a constant real flowrate. According to (3.4.5) this flowrate transforms 

 

                                                                            (      ) 

 

and therefore   can be written as  

  
  

  
                                                                       (      ) 

 

Inserting this into (3.4.12) we obtain the resulting formula 

 

    (
  

  
)
   

                                                                (      ) 

 

We can check the formula and compare its predictions with the predictions of the numerical model. 

For the Seeberg model we have       . Therefore if the flowrate is increased by a factor of 10 the 

stabilization time decreases by a factor of 10
-0.58

 (= 0.263). This is also the case of numerical results 

summarized in Tab. 1. 
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3.5  Pulsating flow 

3.5.1  Types of oscillations considered 

 

The flowrate oscillations are characterised by three parameters – the average volumetric flowrate   , 

the relative flowrate amplitude    and flowrate period  . The oscillations can have various shapes. In 

this report we investigate two shapes – sinusoidal and triangular. 

In case of sinusoidal pulsations the volumetric flowrate depends on time in the following way 

 

  ( )    (       (
   

 
))                                                   (     ) 

 

For the volume increase in case of the sinusoidal oscillations we obtain 
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In case of triangular pulsations the volumetric flowrate depends on time in the following way 
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)  
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where the function “   ( )” gives a whole part of the number “x” and the function “   (   )” gives 

a remainder after dividing of “x” by “y”. 

For the volume increase in case of the triangular oscillations we obtain 
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)  (  

 

 
    (  

 

 
)))         (     ) 

 

The aim of the simulation is to compute the apparent flowrate (2.29) as a function of time and to 

compare it with the real flowrate. Namely we are interested in comparison of the oscillation 

parameters    and   .  

 

3.5.2  Results 

 

The simulations have been done for a fixed value of the period      , five values of the relative 

amplitude                        and for five values of the average volumetric flowrate    
(                   )      . The results for different values of the period   can be obtained using 

the scaling properties of the solution again as we will see later. 

The figures 11 – 22 show oscillations of the real flowrate, the measured flowrate (2.29) and the 

components of deviation of the measured flowrate from the real flowrate caused by the capillary and 

buoyancy forces (2.30), (2.31), (2.32) for various parameters of the oscillating flow. These results are 

discussed in the next section.  
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Fig. 11 Real and measured (apparent) flowrate for            and       , sinusoidal 

oscillations 

 
Fig. 12 Contributions to apparent flowrate for            and       , sinusoidal oscillations 
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Fig. 13 Real and measured (apparent) flowrate for            and       , sinusoidal 

oscillations 

 
Fig. 14 Contributions to apparent flowrate for            and       , sinusoidal oscillations 
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Fig. 15 Real and measured (apparent) flowrate for               and       , sinusoidal 

oscillations 

 
Fig. 16 Contributions to apparent flowrate for               and       , sinusoidal oscillations 
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Fig. 17 Real and measured (apparent) flowrate for               and       , sinusoidal 

oscillations 

 
Fig. 18 Contributions to apparent flowrate for               and       , sinusoidal oscillations 

 



22 
 

 

 
Fig. 19 Real and measured (apparent) flowrate for            and       , triangular 

oscillations 

 
Fig. 20 Contributions to apparent flowrate for            and       , triangular oscillations 

 



23 
 

 

 
Fig. 21 Real and measured (apparent) flowrate for               and       , triangular 

oscillations 

 
Fig. 22 Contributions to apparent flowrate for               and       , triangular oscillations 
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3.5.3  Discussion of the simulation results 

 

The simulation results show that the real and measured period of oscillations are equal, i.e.     . 

From Fig. 13 and 14 we can see that certain phase shift can occur.  

Value of the mean real flowrate differs from the value of mean apparent flowrate, e.g. because of the 

buoyancy. This we have already seen for the stationary case. The contribution of buoyancy to the 

apparent flowrate can be seen clearly e.g. in Fig. 14 and 18. 

The value of relative amplitude of the measured flowrate is larger than the value for real flowrate. We 

will look to this difference in more detail. 

We determine the relative amplitude of the apparent (measured) flowrate (2.29) according to the 

formula 

    
  

      
   

  
      

   

                                                              (     ) 

 

where       is a local maximum of the oscillating apparent flowrate and       is a local minimum of 

the oscillating apparent flowrate. Then we define a deviation of the apparent relative amplitude from 

the real relative amplitude as 

   
      

  
                                                                   (     ) 

 

The following tables summarize the values of    obtained from numerical simulations for various 

parameters of the oscillating flow. 

 

     

           

    

          

    

         

    

       

    

        

     ( ) 

0.1 8.50 8.50 8.50 8.30 7.00 

0.3 8.53 8.47 8.47 8.33 7.00 

0.5 8.54 8.48 8.46 8.34 7.00 

0.7 8.54 8.47 8.46 8.33 7.00 

0.9 8.53 8.48 8.46 8.31 7.00 
 

Tab. 2 Values of    for sinusoidal oscillations and       

 

     

           

    

          

    

         

    

       

    

        

     ( ) 

0.1 8.50 8.50 8.50 8.40 7.20 

0.3 8.53 8.50 8.47 8.37 7.23 

0.5 8.54 8.48 8.48 8.36 7.22 

0.7 8.54 8.49 8.47 8.36 7.23 

0.9 8.54 8.49 8.48 8.34 7.23 
 

Tab. 3 Values of    for triangular oscillations and       

 

Values of    for period different from 5 s can be obtained from the scaling properties described in 

lemma 1. The transformation of volume increase function (3.4.3) can be in case of the oscillating flow 

achieved by the following transformation of parameters    and    

 

                                                                               (     ) 
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                                                                                 (     ) 

 

This transformation of parameters leads to a change of the real and the apparent flowrates described by 

formulas (3.4.5) and (3.4.6). The value of apparent relative amplitude (3.5.5) as well as the value of 

real relative amplitude remains unchanged after this transformation and therefore also the value of    

remains unchanged. Therefore we have 

 

  (           )    (         )                                                     (     ) 

 

Eliminating the parameter   from equations (3.5.7) and (3.5.8) we obtain 

 

       (
  

  
)

 
   

                                                    (      ) 

Inserting this into (3.5.9) we obtain 

 

  (           )    (       (
  

  
)

 
   

   )                               (      ) 

 

This equation says that the value of    for a set of flow parameters                     is the same 

as the value of    for period      which we can choose to be       , mean real flowrate     
    (      )

  (   ) and unchanged value of   . Therefore, this formula allows us to get the values of 

   for periods which differ from 5 s. Since the    does not change much with    it will not change 

much with   too.  

 

We can conclude that for       the difference of relative amplitude of the measured flowrate from 

the real flowrate is between 7 % and 8.6 % for the considered ranges of parameters   ,   . For 

different value of   this shift will not be much different.   

 

4  Conclusions 
 

A physical model of non-stationary interaction of the tube inserted into the beaker with the fluids in 

the beaker was developed for gravimetric nano-flow facility of DTI with special emphasis on the 

capillary and buoyancy forces. The model is based on equation for the shape of interfaces between 

different fluids in the beaker (air-oil and oil-water) and on models of contact angles between these 

interfaces and the tube and beaker wall. In these models a dynamical contact angle is considered which 

can change with motion of the interfaces and which depends on velocity of the interfaces. 

The influence of fluid streams in neighbourhood of the interfaces on the shape of the interfaces was 

not considered in this work since the velocities are so small that this effect is probably negligible. 

 

This physical model was implemented into MATLAB and the equations of this model were solved 

numerically first for the case of stationary flow and then for the case of pulsating flow.  

 

In case of stationary flow the stabilisation time of the system was investigated. It was shown that 

according to the model it takes some time before the measured flowrate reaches a stable non-changing 

value. At the beginning of a measurement when a constant real flowrate starts to flow the measured 

flowrate evolves somehow towards its stabilized value. This period corresponds to evolution of the 

contact angles and near-wall interface velocities from their static values (not moving interface) 

towards certain stabilized values corresponding to nonzero interface velocity.    

The times needed for stabilization of the measured flowrate were investigated. The stabilization time 

was defined as the time needed for the measured flowrate to achieve a deviation from its converged 

value smaller than 0.1 %. This time depends on parameters of the chosen contact angle model. E.g. for 
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a real flowrate of 1 mL/h this time was determined to be around 89 s for Seeberg model of the contact 

angle. For other flowrates the stabilization time    can be determined as 

 

   (
  

  
)
     

      

 

where     is certain known value of stabilization time for certain value of flowrate    (e.g.         

for         ). 

 

Next the pulsating flows were investigated. Sinusoidal and triangular oscillations were considered. 

The flows were described by three parameters – mean volumetric flowrate   , period   and relative 

amplitude    which is defined as ratio of amplitude and mean volumetric flowrate. The considered 

ranges of these parameters were                                      .  

The same parameters were investigated for the measured flowrate which is obtained by time derivative 

of the scale reading. The differences between the parameters of the real and the measured flowrate 

were examined. 

The period of the oscillations   remains unaffected by the buoyancy of the capillary forces and 

therefore it is the same for the real and measured flowrate.  

The mean volumetric flowrate    can differ for the real and measured case e.g. because of buoyancy 

force. This shift appears also in constant flow case since the buoyancy force grows with time during 

filling of the beaker and therefore contributes to the time derivative of the scale reading. The 

quantification of the shift in case of pulsating flow was not investigated in detail in this work but it is 

reasonable to assume that the magnitude of the effect is similar as in the stationary case. 

The relative amplitude    was found to be larger for the measured flowrate then for the real one. The 

difference was between 7.0 % and 8.6 % for all range of parameters investigated. For periods other 

than      the difference does not change much as it was proven analytically. 

 

The results obtained within this work should be compared with experimental results obtained by DTI 

in order to verify correctness of the model and its conclusions. The results of the numerical analysis 

could be also fine-tuned based on experiments of DTI which can give better estimations of the 

parameters of the model. The assumptions of the MATLAB model could be also verified by a CFD 

simulation e.g. in OpenFoam which can give an information about influence of the fluid velocity 

distribution to the capillary and buoyancy forces. 
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