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1  Introduction 
 

The aim of this text is to formulate a physical model of processes which occur in the nano-flow 

generator of VSL which is based on a thermal expansion of water enclosed in a titanium reservoir, to 

identify the components of the flowrate which cannot be calculated analytically and to compute these 

components numerically using a COMSOL software.  

2  Physical model of the nano-flow generator 
 

If m(t) is a mass contained in the system in front of the meter under test (heated reservoir, cooling 

pipe, connecting parts) as a function of time and ρout is a density of water coming from the system in 

front of the MUT then the volumetric flow rate coming to the MUT is given by  

 

   
 

    

  

  
                                                                             

 

The mass contained in the system is given as 

 

                                                                                   

 

    

 

 

where V(t) is the interior space of the system (inside the reservoir and tubing) which can change with 

time due to thermal expansion of the reservoir and tubing and        is a density of water inside the 

system as a function of time and position. The time derivative of mass inside the system is then given 

as 

 

  

  
  

       

  
  

 

    

                  

 

     

                                             

 

where       is a boudary surface of the system and         is a velocity of points at the boundary of 

the system. For example in the titanium reservoir       is the boundary surface between water and 

titanium and         is velocity of points at this boundary which are moving due to the thermal 

expansion of the titanium reservoir.  

The complete system consists of a part which is heated in thermal bath and a part where the water is 

cooled to the ambient temperature again. We can split the space of the system      and its boundary 

      into two parts corresponding to the heated (index H) and cooled (index C) part. Then we get 

 

  

  
  

       

  
  

 

     

                  

 

      

  
       

  
  

 

     

                     

 

      

        

 

The first term is discussed in Section 3 and the second term is discussed in Section 4. The third and 

fourth terms are small and they are discussed in Section 5. In fact, in case the cooling down to ambient 

temperature is instantaneous, these terms are zero. These terms are also zero in case T(x, t) over the 

capillary is not a function of time.  
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3  Thermal expansion of water in the reservoir 
 
Now we will focus on the first term of (2.4) in more detail. This term is the main term in flowrate 

calculation and describes the thermal expansion of water in the reservoir itself. 

 

3.1  Physical model for the thermal expansion term 
 
In the reservoir there is a thermometer inserted. We denote TM(t) the temperature as measured by this 

thermometer. This temperature is a function of time. Consider the temperature field in the system 

T(x,t) in a form 

 

                                                                                
 

The water density is a function of temperature and pressure. We neglect the density changes due to 

pressure change and we consider only the temperature dependence of the density. In this work the 

Tanaka formula for degassed water was used. According to this formula we have 

 

       
      

       

        
                                                       

 

where T  is temperature in °C and                                                 
                               The time derivative of the density is then given as  

 
          

  
 

  

  

  

  
                                                                

 

By means of a Taylor expansion, the temperature derivative of density can be written as 

 

     

  
 

                 

  
 

         

  
 

          

   
                             

 

where the second and higher order terms are neglected. Combining equations (3.1.3) and (3.1.4) we 

have 

 

  

  
  

         

  
 

          

   
           

      

  
 

         

  
                       

 

Dropping the second order term we obtain 

 

  

  
 

         

  
 
      

  
  

                           
          

   
 
      

  
           

         
         

  
 
         

  
                                                              

 

Therefore for the first term in (2.4) we obtain 
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The first term of this formula is the main and the largest one. The second and third terms are 

correction terms. The second term represents a contribution of non-homogeneity of the thermal 

expansion coefficient      , i.e.       is a function of position in space. The third term represents a 

contribution of non-homogeneity of temperature increase, i.e.       is a function of position in space. 

In case of uniform temperature increase, this term will go to zero.  

 

The second term reduces with reducing 
          

   . Relatively, this term reduces when the ratio of 

          

    over 
         

  
 reduces. From equation (3.1.2) we have: 
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In the below figure the first and second order derivative of the density with respect to temperature are 

plotted. From this picture it follows that the second correction term reduces, absolutely and relatively 

compared to the first term, when the temperature increases.  
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In the formula (3.1.7) all quantities are known or measured besides the integrals of temperature and its 

time derivative. Estimations for these integrals are subject of numerical simulations and thus the goal 

of this report. The volume of the heated part of the system       is given by a measurement of this 

volume for certain temperature and by thermal expansion of the materials of the heated part (titanium 

for reservoir, stainless steel for capilary, see Section 4). The heat conductivity of titanium and stainless 

steel is large compared to water and therefore the temperature does not differ so much in various parts 

of the metals as can be also seen from the numerical simulations (Tab. 3). Therefore we consider the 

temperature in the titanium resevoir and in the steel capilary not a function of position in space. If we 

denote TR(t), resp. TC(t) the temperature in the titanium reservoir, resp. in capilary and we denote βR 

and βC volume thermal expansion coefitients of titanium and stainless steel at ambient temperature T0, 

we obtain  

 

                                                                           

 

where        and        are the volumes of water filled cavities inside the titanium reservoir (R) and 

inside the capilary (C) at temperature   . These volumes will be known from differential mass 

measurements. TR(t) is measured by thermometer installed in a copper mounting attached to the 

titanium part and TC(t) should be with high accuracy the temperaure of the thermal bath if the capilary 

is in direct contact with the thermal bath. Because the volume of the reservoir is larger compared to 

capilary, the second term will not be considered in this report. 

 

3.2  General properties of the temperature distribution for the linear case 
 

Now we will look to the temperature integrals in more detail. Since the temperature increase in the 

thermal bath is not far from linear function it is useful to study the behavior for the linear case. 

 

Consider a system with heat conduction but without heat convection. Further, the  temperature at the 

boundary of this system which is given by a function 

 

                                                                                  

 

Even if we have heat convection of the moving fluid this effect will have very small influence to the 

overall temperature distribution in the reservoir. Also the parts of the boundary of our system which 

are not in direct contact with the thermal bath are very small as compared to the rest (just the surfaces 

which are intersections of the water level in the bath with our system). We will now show some 

properties of the system assuming that it consists of one metarial . However, the result can be 

generalised to a system composed of several materials with continuous temperature and heat flux at 

their contact surfaces. The heat conduction equation has the form 

 
  

  
                                                                                     

 

where κ=k/(ρ.Cp) (k is thermal conductivity of the material, ρ is its density and Cp is its heat capacity 

at constant pressure) and   is the Laplace operator. We look for a solution of the heat conduction 

equation (3.2.2) in the form (educated guess based on the numerical simulations) 

 

                                                                                
 

where the index x denotes a spatial part of the temperature function.  

Inserting this function into equation (3.2.2) we find that it is a solution if the spatial part satisfies the 

equation 

 

      
 

 
                                                                                  



7 
 

 

with boundary value of        equal to T0. In the numerical simulations we see that the temperature 

distribution approaches the form (3.2.3) after some time if the initial temperature is T0 everywhere and 

the boundary temperature is given by the formula (3.2.1).  

Intermezzo, if we know the solution     of the Poisson equation (3.2.4) for certain value of α=α1 then 

the solution     for another value of α=α2  and the same boundary condition       is given as 

 

       
  

  
            

  

  
                                                      

 

as can be verified by direct examinimg of the boundary condition and inserting the solution into the 

equation (3.2.4).  

Since the time evolution is linear everywhere in the heated part of the system according to (3.2.3) also 

for the function TM(t) we obtain 

 

                                                                                   

 

where        is the       function evaluated at the temperature measurement point. Using equations 

(3.1.1), (3.2.3) and (3.2.6) we get  

 

                                                                                 

 

This implies that         does not depend on time! (This is confirmed by the numerical simulations, 

the third correction term in (3.1.7) goes to zero for increasing time.) Furthermore, it implies that using 

the formula (3.2.5) we obtain the following scaling properties for         

 

         
  

  
                                                                        

 

Now suppose that the temperature of the thermal bath is not exactly linear function of time. Consider 

that the temperature at the boundary of the heated part of our system is given as 

 

                                                                              

 

The function         then can be written as 

 

                                                                              

 

where        is the function         how it would be if        , i.e. in linear case, and          

is a correction for nonlinearity. The function        satisfies the scaling law (3.2.8). For nearly linear 

temperature increase, i.e.       small compared to  ,  the          function will be small compared 

to       .  

 

3.3  Numerical simulations for the temperature distribution 
 

Simulations have been done for two reservoir geometries – one with volume of approx. 64 mm
3
 (see 

Figure 2) and second with volume of approx. 1003 mm
3 

(see Figure 6). The geometries were created 

according to drawings no. 120906-1 – 120906-5 of VSL. Basic dimensions, geometry for the 

simulation and mesh are depicted in Fig. 1-8.  

For each geometry simulations have been done for four temperature boundary conditions (summarized 

in Tab. 1).  Two (no. 1 and 2) correspond to a linear temperature increase of 0.01 K/s and 0.1 K/s. The 

other two (no. 3 and 4) correspond to a nonlinear temperature increase according to formulas in Tab. 

1. These formulas are obtained from the requirement of a constant mass flowrate at the outlet, 
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assuming that the non homogeneous expansion coefficient and temperature increase can be neglected 

(hence, only the first term of (3.1.7) is considered). Note, this assumption turned out to be inaccurate 

for the larger temperature gradients (see next series of figures).  

In table 1 the values of    are the expected values of the mass flowrate and   are the reservoir 

volumes. The values of a and b are obtained from linear fit of a temperature derivative of water 

density as a function of temperature. The boundary condition no. 1 can be considered as linear 

approximation of boundary condition no. 3. And similarly the boundary condition no. 2 can be 

considered as linear approximation of the boundary condition no. 4. For a volume of 1000 mm
3
 and 

the third boundary condition, a flow rate of 120 nl/min should be obtained.     

 

b.c. 

no. 
formula parameters 

flowrate for 

1000 mm
3
 

1 
                    110 - 130 

µg/min 

2 
                   1300 - 1700 

µg/min 

3                                                   120 µg/min 

4                                                  1500 µg/min 

                                             

   

Tab. 1 Boundary conditions for temperature. The conditions b.c. 3 and b.c. 4 were formulated in order 

to obtain approximately constant mass flowrate Qm which is given as the value of Qm/V multiplied by 

the reservoir volume. Flowrate values for reservoir volume of 1000 mm
3
 are in the last column. The 

linear conditions 1 and 2 does not lead to constant flowrate but the b.c. 1 is similar to b.c.3 and leads 

to similar flowrates and b.c. 2 leads to similar flowrates as b.c. 4. 

 

At the outlet from the capillary a zero gradient boundary condition for tempetaure was applied. For 

velocity field a noslip condition was applied at walls and fixed pressure condition was applied at the 

capillary outlet.  

 

 
Fig. 1 Middle reservoir dimensions accrding to the drawing no. 120906-1. 
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Fig. 2 Geometry of the middle reservoir used for simulations.  

 

 

 
Fig. 3 Mesh for the middle reservoir. 
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Fig. 4 Mesh for the middle reservoir – detail of capillary inlet. 

 

 
Fig. 5 Dimensions of the large reservoir accrding to the drawing no. 120906-5. 
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Fig. 6 Geometry of the large reservoir used for simulations. 

 
Fig. 7 Mesh for the large reservoir. 
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Fig. 8 Mesh for the large reservoir – detail of capillary inlet. 

 

The aim of the simulations is to obtain the tempearture distribution in the reservoir as a function of 

time in order to be able to calculate the second and the third term of the formula (3.1.7). In the formula 

(3.1.7) the temperature TM (t) measured by a thermometer inside the reservoir occurs. In the 

simulations this temperature was represented by a temperature at the inner wall of the reservoir in the 

point of the center of the end of stainless steel tube which contains the thermometer wires (points 1 in 

Fig. 15).  

 

Tables for this temperature as a function of time were obtained for each simulation. Furthermore tables 

for average temperature TA(t) in the water part of a geometry as a function of time were obtained for 

each simulation. The average temperature is calculated as an integral of the temperature over the water 

volume devided by the water volume. The second term of (3.1.7) can then be expressed as  

           

 

     

                                                                        

 

As discussed in Section 3.2, for a constant temperature gradient, the spatial temperature distribution 

can be described as: 

 

                                                                              

 

Therefore, an approximation for the average temperature, TA(t), is given as: 

 

                            

 

where Tcopper (t) is the average temperature measured in the copper mounting blocks. Alternatively, the 

average temperature can be given as: 
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where c is constant in case of a constant temperature increase. 

 

The simulations have been done with fixed reservoir geometry without thermal expansion of the 

reservoir walls. In this case the third term of (3.1.7) can be expressed as  

 

 
         

  
  

 

     

 
 

  
           

 

     

   

 

  
                                        

 

The time derivative has been derived numerically. Note, these correction terms can also be estimated 

for calibration work. The average temperature and time derivatives then follow from (a weighted) 

averaged of the installed temperature sensors.  

 

Next the simulation results are presented. Graphs Fig. 9-11 represent the temperature distribution for 

the middle reservoir, boundary conditions no. 2 (see Tab. 1) and time 100 s. The temperature 

distribution for this case is typical for all simulated cases for the middle reservoir. The graphs for 

nonlinear cases do not differ much from their linear counterparts.  Hence, the temperature increase is 

indeed not far from linear. The case with b.c. no. 1 differs from the case with b.c. no. 2 by temperature 

rescaling – the temperature scale is divided by 10 for b.c. no. 1. This corresponds to the scaling 

properties of temperature given by (3.2.8). 

 

Graphs Fig. 12-14 represent the temperature distribution for the large reservoir, boundary conditions 

no. 2 and time 80 s. The temperature distribution for this case is typical for all simulated cases for the 

large reservoir similarly as for the case of the middle reservoir with the same scaling law. 

 

Graphs Fig. 16-23 show temperature in points depicted in Fig. 15 as a function of time. These are 

three points selected for each reservoir size – point no.1 is representing the thermometer installation – 

i.e. the point where TM is taken, point no.2 is the center of the reservoir and point no.3 is at the end of 

one of the capillaries. 

 

Graphs Fig. 24-47 show how the particular terms of the formula (3.1.7) evolve in time for various 

cases. For each case three graphs are shown. The first graph (Fig. 24, 27, 30, 33, 36, 39, 42, 45) shows 

the first term of (3.1.7) and the sum of all three terms of (3.1.7) as a function of time. The second 

graph (Fig. 25, 28, 31, 34, 37, 40, 43, 46) shows the second term of (3.1.7) in % of the first term as a 

function of time. The third graph (Fig. 26, 29, 32, 35, 38, 41, 44, 47) shows the third term of (3.1.7) in 

% of the first term as a function of time. 

 

The second and the third term of (3.1.7) show a damped oscilatory behaviour. The magnitude of these 

terms is significant for the flowrate determination with the required accuracy. For the cases with linear 

temperature increase the temperature difference             oscilates around certain constant value 

and approaches this value with increasing time. Table 2 summarises some of the features of the 

evolution of the second and the third term of the formula (3.1.7). The quantities in the table 2 have the 

following meaning:    

 tex … times at which the oscilations have an extreme (first two deflection points (first 

derivative changes sign) are listed for the middle   reservoir and only the first turning point is 

listed for the large reservoir) 

 Q2(tex) … value of the second term for t = tex in % of the first term 

 Q2(80s) … value of the second term for t = 80 s in % of the first term 

 ΔTav (inf) … the value which is approached by             for large times; for linear 

temperature increase the quantity             should converge to certain value which is in 

the table, for nonlinear increase the convergence is not ensured and a range of             

is given in the table for range of times (40-80) s 
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 Q3(tex) … value of the third term for t = tex in % of the first term 

 Q3(80s) … value of the third term for t = 80 s in % of the first term 

 

 

 

 
Fig. 9 Temperature distribution for middle (64 mm

3
) reservoir, b.c. no. 2 (0.1 K/s) after 100 s. The 

black line is the (semi) axisymmetry line, the blue line is the transversal line. 

 

 
Fig. 10 Temperature distribution for the middle reservoir, b.c. no. 2 (0.1 K/s) after 100 s – transversal 

line in the middle (64 mm
3
) of the cylinder.  
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Fig. 11 Temperature distribution for the middle (64 mm

3
) reservoir, b.c. no. 2 (0.1 K/s) after 100 s – 

axis of the cylinder. The apparent large osciliations in the middle part are most probably a numerical 

artifact. 

 
Fig. 12 Temperature distribution for the large reservoir (1003 mm

3
), b.c. no. 2 (0.1 K/s)and time 80 s. 

The black line is the (semi) axisymmetry line, the blue line is the transversal line. 
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Fig. 13 Temperature distribution for the large reservoir (1003 mm

3
), b.c. no. 2 (0.1 K/s)and time 80 s – 

transversal line in the middle of the cylinder.  

 

 
Fig. 14 Temperature distribution for the large reservoir (1003 mm

3
), b.c. no. 2 (0.1 K/s)and time 80 s – 

axis of the cylinder. 
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Fig. 15 Points where temperature has been determined in more detail. Point 1 corresponds with the 

point where TM is measured. 

 

 

 
Fig. 16 Time evolution of temperature for the middle (64 mm

3
) reservoir and b.c. no. 2 (0.1 K/s). Red 

line is temperature at the point 1 (see Fig. 15), blue line at the point 2 and green line at the point 3 

(blue and green are almost the same). Note that the maximum temperature difference corresponds with 

Figure 10 and is roughly 0.3 K. 
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Fig. 17 Time evolution of temperature for middle (64 mm

3
) reservoir and b.c. no. 4 (≈ 0.1 K/s). Blue 

line is temperature at the point 1 (see Fig. 15), red line at the point 2 and green line at the point 3 (red 

and green are almost the same). Note that this figure is similar to Figure 16, showing the temperature 

increase is indeed almost linear.  

 
Fig. 18 Time evolution of temperature for middle (64 mm

3
) reservoir and b.c. no. 1 (0.01 K/s). Blue 

line is temperature at the point 1 (see Fig. 15), red line at the point 2 and green line at the point 3 (red 

and green are almost the same). Note that the maximum temperature difference corresponds with 

Figure 10 and is roughly 0.03 K, which is 1 tenth of the difference found for a temperature gradient of 

0.1 K/s, proving that the temperature solutions can indeed be scaled. 
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Fig. 19 Time evolution of temperature for middle (64 mm

3
) reservoir and b.c. no. 3 (≈ 0.01 K/s). Blue 

line is temperature at the point 1 (see Fig. 15), red line at the point 2 and green line at the point 3 (red 

and green are almost the same).  

 

 

 
Fig. 20 Time evolution of temperature for the large reservoir (1003 mm

3
)and b.c. no. 2 (0.1 K/s). Red 

line is temperature at the point 1 (see Fig. 15), blue line at the point 2 and green line at the point 3. 

Note that the larger reservoir results in larger temperature differences. The coldest point is found in 

center of the reservoir. 
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Fig. 21 Time evolution of temperature for the large reservoir (1003 mm

3
)and b.c. no. 4 (≈ 0.1 K/s). 

Red line is temperature at the point 1 (see Fig. 15), blue line at the point 2 and green line at the point 3. 

 

 

 
Fig. 22 Time evolution of temperature for the large reservoir (1003 mm

3
)and b.c. no. 1 (0.01 K/s). Red 

line is temperature at the point 1 (see Fig. 15), blue line at the point 2 and green line at the point 3. 
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Fig. 23 Time evolution of temperature for the large reservoir (1003 mm

3
)and b.c. no. 3 (≈ 0.01 K/s). 

Red line is temperature at the point 1 (see Fig. 15), blue line at the point 2 and green line at the point 3. 

 

 

 
 

Fig. 24 Term 1 and sum  (true flowrate) of all three terms of the formula (3.1.7) as a function of time 

for middle (64 mm
3
) reservoir and b.c. no. 1 (0.01 K/s). See Figures 25 and 26 for the second and the 

third term (correction terms). The spikes are probably numerical artifacts. 
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Fig. 25 Term 2 (correction for spatial variation of the expasion coefficient) of the formula (3.1.7) as a 

function of time for middle (64 mm
3
) reservoir and b.c. no. 1 (0.01 K/s).  

 

 
 

Fig. 26 Term 3 (correction for spatial variation of temperature gradient) of the formula (3.1.7) as a 

function of time for middle (64 mm
3
) reservoir and b.c. no. 1 (0.01 K/s). Correction term tends to zero 

for increasing time. 

 
 

Fig. 27 Term 1 and sum  (true flowrate) of all three terms of the formula (3.1.7) as a function of 

middle (64 mm
3
) for middle reservoir and b.c. no. 3 (≈ 0.01 K/s). See Figures 28 and 29 for the second 

and the third term (correction terms). Note that after, say, 1 minute the flow rate is fairly stable. 
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Fig. 28 Term 2 (correction for spatial variation of the expasion coefficient) of the formula (3.1.7) as a 

function of time for middle (64 mm
3
) reservoir and b.c. no. 3 (≈ 0.01 K/s). Note that the correction 

term is small enough to be neglected. 

 

 
 

Fig. 29 Term 3 (correction for spatial variation of temperature gradient) of the formula (3.1.7) as a 

function of time for middle (64 mm
3
) reservoir and b.c. no. 3 (≈ 0.01 K/s). Note that the for t 

sufficiently large the correction term is small enough to be neglected. 
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Fig. 30 Term 1 and sum  (true flowrate) of all three terms of the formula (3.1.7) as a function of time 

for middle (64 mm
3
) reservoir and b.c. no. 2 (0.1 K/s). See Figures 31 and 32 for the second and the 

third term (correction terms).  

 

 

 
 

Fig. 31 Term 2 (correction for spatial variation of the expasion coefficient) of the formula (3.1.7) as a 

function of time for middle (64 mm
3
) reservoir and b.c. no. 2 (0.1 K/s).  
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Fig. 32 Term 3 (correction for spatial variation of temperature gradient) of the formula (3.1.7) as a 

function of time for middle (64 mm
3
) reservoir and b.c. no. 2 (0.1 K/s). Correction term tends to zero 

for increasing time. 

 
Fig. 33 Term 1 and sum  (true flowrate) of all three terms of the formula (3.1.7) as a function of time 

for middle (64 mm
3
) reservoir and b.c. no. 4 (≈ 0.1 K/s). See Figures 34 and 35 for the second and the 

third term (correction terms).  
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Fig. 34 Term 2 (correction for spatial variation of the expasion coefficient) of the formula (3.1.7) as a 

function of time for middle (64 mm
3
) reservoir and b.c. no. 4 (≈ 0.1 K/s).  

 

 
 

Fig. 35 Term 3 (correction for spatial variation of temperature gradient) of the formula (3.1.7) as a 

function of time for middle (64 mm
3
) reservoir and b.c. no. 4 (≈ 0.1 K/s).  

 
Fig. 36 Term 1 and sum  (true flowrate) of all three terms of the formula (3.1.7) as a function of time 

for large reservoir (1003 mm
3
) and b.c. no. 1 (0.01 K/s). See Figures 37 and 38 for the second and the 

third term (correction terms).  
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Fig. 37 Term 2 (correction for spatial variation of the expasion coefficient) of the formula (3.1.7) as a 

function of time for large reservoir (1003 mm
3
)and b.c. no. 1 (0.01 K/s).  

 

 
 

Fig. 38 Term 3 (correction for spatial variation of temperature gradient) of the formula (3.1.7) as a 

function of time for large reservoir (1003 mm
3
)and b.c. no. 1 (0.01 K/s). Correction term tends to zero 

for increasing time. 
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Fig. 39 Term 1 and sum  (true flowrate)of all three terms of the formula (3.1.7) as a function of time 

for large reservoir (1003 mm
3
)and b.c. no. 3 (≈ 0.01 K/s). See Figures 40 and 41 for the second and the 

third term (correction terms).  

 

 

 
 

Fig. 40 Term 2 (correction for spatial variation of the expasion coefficient) of the formula (3.1.7) as a 

function of time for large reservoir (1003 mm
3
)and b.c. no. 3 (≈ 0.01 K/s).  
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Fig. 41 Term 3 (correction for spatial variation of temperature gradient) of the formula (3.1.7) as a 

function of time for large reservoir (1003 mm
3
)and b.c. no. 3 (≈ 0.01 K/s).  

 
Fig. 42 Term 1 and sum  (true flowrate) of all three terms of the formula (3.1.7) as a function of time 

for large reservoir (1003 mm
3
)and b.c. no. 2 (0.1 K/s). See Figures 43 and 44 for the second and the 

third term (correction terms).  

 

 

 
 

Fig. 43 Term 2 (correction for spatial variation of the expasion coefficient) of the formula (3.1.7) as a 

function of time for large reservoir (1003 mm
3
)and b.c. no. 2 (0.1 K/s).  
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Fig. 44 Term 3 (correction for spatial variation of temperature gradient) of the formula (3.1.7) as a 

function of time for large reservoir (1003 mm
3
)and b.c. no. 2 (0.1 K/s). Correction term tends to zero 

for increasing time. 

 

 
Fig. 45 Term 1 and sum  (true flowrate) of all three terms of the formula (3.1.7) as a function of time 

for large reservoir (1003 mm
3
) and b.c. no. 4 (≈ 0.1 K/s). See Figures 46 and 47 for the second and the 

third term (correction terms).  
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Fig. 46 Term 2 (correction for spatial variation of the expasion coefficient) of the formula (3.1.7) as a 

function of time for large reservoir (1003 mm
3
)and b.c. no. 4 (≈ 0.1 K/s).  

 

 
 

Fig. 47 Term 3 (correction for spatial variation of temperature gradient) of the formula (3.1.7) as a 

function of time for large reservoir (1003 mm
3
)and b.c. no. 4 (≈ 0.1 K/s). 
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Tab. 2 Some features of the evolution of the terms in the formula (3.1.7). The meaning of the 

quantities is: tex … times at which the oscilations have an extreme (first two turning points are listed 

for the middle   reservoir and only the first turning point is listed for the large reservoir); Q2(tex) … 

value of the second term for t = tex in % of the first term; Q2(80s) … value of the second term for t = 

80 s in % of the first term; ΔTav (inf) … the value which is approached by             for large 

times, for linear temperature increase the quantity             should converge to certain value 

which is in the table, for nonlinear increase the convergence is not ensured and a range of       
      is given in the table for range of times (40-80) s; Q3(tex) … value of the third term for t = tex in 

% of the first term; Q3(80s) … value of the third term for t = 80 s in % of the first term. 

The quantities with asterix goes to zero for large time. The listed times of extremes are more or less 

the same if we take term 2 and term 3 in absolute units or in % of term 1. The only exception is 

marked in red colour – in this case the function in absolute units was used to determine the time of 

maximum. 

 

 Term 2 Term 3  

 tex Q2(tex) Q2(80s)  ΔTav (inf) tex Q3(tex) Q3(80s) Q2(80s)+Q3(80s) 

 s % % K s % % % 

Mid bc1 
18 -0.11 

-0.091 0.019 
30 2.03 

0.18
* 

0.089 
53 -0.090 60 -0.50 

Mid bc3 
18 -0.11 

-0.086 
0.017-

0.018  

30 2.06 
0.13 0.044 

58 -0.084 65 -0.54 

Mid bc2 
18 -0.98 

-0.6 0.19 
40 1.3 

-0.20
* 

-0.80 
70 -0.61 70 -0.23 

Mid bc4 
11 -1.1 

-0.53 
0.17 – 

0.18  

30 3.6 
1.5 0.97 

50 -0.62 57 -0.82 

Large bc1 35 -0.38 -0.34 0.07 55 2.4 0.8
* 

0.46 

Large bc3 35 -0.37 -0.32 0.07 55 2.9 1.4 1.1 

Large bc2 32 -3.1 -2.2 0.7 55 2.7 0.9
* 

-1.3 

Large bc4 26 -3.4 -2.0 0.6 – 0.8 55 6.2 1.8 -0.2 

 

 

3.4  Temperature distribution in metal parts 
 

For each simulation tables of minimal temperature as a function of time were obtained for each 

particular material of the system. For copper, titanium and stainless steel parts a maximal tempearture 

is the one at the outer boundary. From the knowledge of maximal and minimal temperatures the 

maximal temperature difference ΔTmax = Tmax – Tmin was calculated in each particular material. For 

linear temperature increase this temperature difference approaches certain constant value. These 

values are listed in table 3 below. 

 

 ΔTmax (K) 

 copper titanium steel 

Mid b.c. 1 0.0012 0.010 0.041 

Mid b.c. 2 0.012 0.10 0.41 

Large b.c. 1  0.0063 0.041 

Large b.c. 2  0.063 0.41 

 

Tab. 3 Temperature differences in metal parts 

 

We see that in the copper and titanium parts the temperature distribution is almost homogeneous. 

 

  



33 
 

3.5  Conclusions on thermal expansion term 
 

As discussed earlier, the second term of the formula (3.1.7) represents a contribution of non-

homogeneity of the thermal expansion coefficient      . The third term of this formula represents a 

contribution of non-homogeneity of temperature increase. From the simulations it follows that these 

terms are significant for the total mass flow rate, especially for a large temperature increase and low 

starting temperature. The third correction term can be neglected for almost linear temperature gradient 

and stabilisation time which is large enough (several minutes). The second correction term can be 

reduced by starting from a higher temperature. However, durint the start up phase both terms are too 

large to be discarded. 

Hence, if a flowrate with stability below several tenths of percent is needed within 60 s, a bath-

temperature as a function of time would have to be determined from further computations. Linear 

temperature increase or temperature increase calculated from the requirement of stability of the first 

term of (3.1.7) does not give a stable flowrate with required accuracy within the period of one minute. 

Determination of the bath-temperature increase for stable flowrate would be probably easier if the 

stabilisation time would be longer – e.g. several minutes. In this case the oscilations would be already 

damped enough. Since the calibration times will be in the order of 5 minutes, the determination of 

bath-temperaure increase  is not expected to be a major problem. 

The results obtained here were verified also for coarser computational mesh in case of the middle 

reservoir and b.c. no. 2 with results not differing significantly. Hence, one could argue the global 

values are mesh converged.  However, the numerical artifacts shown may be due to a poor or too low 

grid resolution. Refining the grids in these areas may change the solution.  

4  Thermal expansion of the reservoir walls 
 

The second term in (2.4) describes thermal expansion of the reservoir and the heated part of the 

capilary. A density of water which appears in the second term of (2.4) is a density at the boundary 

between water and the wall. Consider the temperature at the wall in form  

 

                                                                                  

 

where       is the temperature as measured by the thermometer installed in the copper mounting. The 

         deviation should be small as compared to      . Estimation of its value can be done based 

on the numerical simulations. The density at the wall is given as 

 

                                     
  

  
                                      

 

where we neglect the second and higher order terms. The second term of (2.4) then can be written as 

 

                 

 

      

                      

 

      

 
  

  
                           

 

      

            

 

Using (3.1.8) we obtain 

 

           

 

      

 
      

  
         

      

  
         

      

  
                              

 

So in total we have 
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From a simulation we can obtain an upper bound for         . Consider that                   . 

Then the upper bound for the second term in (4.5) is 

 

 
  

  
                           

 

      

   
  

  
               

      

  
                        

 

From the graphs Fig. 16-23 we see that the temperature difference between points 1 and 3 (see Fig. 15 

for the point definitions) is below 0.5 K for the b.c. no. 2 and 4 and below 0.05 K for b.c. no. 1 and 3. 

If we consider this as the maximal difference        we obtain that the second term of (4.6) is not 

larger then 0.015 % of the first term in case of b.c. no. 2 and 4 and not larger then 0.0015 % of the first 

term for b.c. no. 1 and 3. The second term of (4.6) is therefore negligible and we can write 

 

                 

 

      

                   

      

  
         

      

  
                     

5  Cooling 
 

The third term in (2.4) describes the part of mass flow generated by water density changes in the 

cooling part of the capilary. 

 

5.1  Physical model 
 

The capilary is inserted into a hose with streaming water. The cooling water enters the hose with 

ambient temperature. The temperature of water in the cooling capilary reach the ambient temperature 

after some length so it is reasonable to consider the temperature of water as  

 

                                                                                         
 

For the derivative of density with respect to time we can write 

 

  

  
      

  

  
        

       

  
  

  

  
     

   

   
              

       

  
                      

 

For the third term in (2.4) we then obtain 
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At first we will do some analytical estimations and then we will proceed to numerical results. In our 

analytical estimate we will consider that the flow inside the capilary is slow enough such that the 

convection effects are unimportant.  

Consider a cylinder which is a piece of the capilary. The thermal energy increase in the cylinder equals 

to the heat transfered to the cylinder through its wall. It is described by an equation 

 

 

  
       

 

 

            

 

  

                                                            

 

We will be especially interested in the longitudinal temperature distribution in the capilary and 

therefore we split the integration into longitudinal and transversal part. We introduce a coordinate x in 

the longitudinal direction which runs from 0 to L in our cylinder and we get 

 

 

  
         

 

 

 

  

 

      
  

  
       

 

 

    
  

  
       

 

 

      
  

  
  

 

 

                       

 

where the surface integral on the right hand side were split into the integral over the bottom part, up 

part and the wall of the cylinder,  the derivative of temperature with respect to n denotes the derivative 

along the normal to the wall of the cylinder and r denotes the capilary radius. The values of cp,   and k 

have constant values in stainless steel and different constant values in water. However surface of water 

in the cut through the cylinder is only about 0.4% of the total surface of the cut so we will neglect it 

and consider the material parameters constant and the same everywhere. If we take the average 

temperature in the cut 

 

      
 

 
    

 

 

                                                                          

 

where S is the surface area of the cut then (5.1.5) gives 

 

   

    
 

  
   

  

 

     
   

  
        

   

  
           

  

  
  

 

 

                                 

 

The first two terms on the right hand side can be writen as 

 

  
   

  
        

   

  
         

    

   
  

 

 

                                              

 

If we insert it into (5.1.7) and we consider that the equation holds for arbitrary long cylinder then we 

can remove the integrals to obtain 

 

    
   

  
   

    

   
      

  

  
                                                         

 

The second term on the right hand side of the equation (5.1.9) is basically a heat flux density through 

the wall of the cylinder. Let us suppose that the heat flux density through the cylinder wall is 

proportional to the difference between the average temperature in the capilary and the average 

temperature outside the capilary which is the ambient temperature T0. Then we can write 
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where   is a positive constant. The equation (5.1.9) then gives 

 

   

  
  

    

   
                                                                         

 

where 

  
 

   
                                                                                    

 

We now consider the longitudinal coordinate x to have its origin at the beginning of the cooled part of 

the capilary. We look for a solution of the equation (5.1.11) with linearly increasing temperature at the 

origin and vanishing derivative of the temperature far from the origin, i.e. we consider the following 

boundary conditions 

 

              
   

  
                                                        

 

A hint from numerical simulation is that the solution depends linearly on time (with high degree of 

accuracy) in every position but the rate of temperature change differs place to place. We therefore look 

for a solution in form 

 

                                                                                   

 

This leads to a pair of differential equations 

 

 
   

   
       

   

   
                                                    

 

If we apply an initial condition            to the formula (5.1.14) we obtain         but in this 

case  the equations (5.1.15) lead to a solution        and therefore             If we do not apply 

the initial condition but just the boundary conditions (5.1.13) we obtain the following solution    

 

             
  

 
 
  

   
 

    
                                                   

 

We should understand the formula (5.1.16) as a temperature wave which propagates along the capilary 

with speed of      and disturbes the original state           . Therefore we apply the formula 

(5.1.16) for          and for          we have           . It seems to be a reasonable 

assumption that the temperature of water inside the capilary is more or less the same as the 

temperature of the capilary itself at a given distance from the inlet and therefore is also given by the 

formula (5.1.16). We will verify this assumption by comparison of the formula (5.1.16) with results of 

numerical simulations for the temperature distribution inside the capilary. 

 

5.2  Numerical simulations for the cooling term 
 

Simulations have been done with a capilary of outer diameter of 1.58 mm, inner diameter of 0.1 mm 

and length of 15 cm. The capillary is made of stainless steel with thermal conductivity of 16 W/(m.K), 

density of 8030 kg/m
3
 and thermal capacity of 500 J/(kg.K). The capilary is inserted to a cooling tube 

with flowing water. The inner diameter of the cooling tube is 6.4 mm. The cooling water enters the 
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cooling tube from the opposite side than the water from the reservoir. The flowrate of the cooling 

water is between 13 mL/min and 1300 mL/min. This corresponds to a velocity range of 0.0067 m/s to 

0.67 m/s. The simulations have been done for flowrates corresponding to reservoir volumes of 100, 

1000 and 10000 mm
3
, temperature increase rates of 0.01 K/s and 0.1 K/s and cooling flowrates of 

13 mL/min and 1300 mL/min.  

 

Boundary conditions: 

Inlet to the capilary: a constant velocity of water, temperature increasing in time (same as the thermal 

bath temperature) 

Outlet from the capilary: a fixed pressure, zero normal temperature derivative 

Steel cut at the inlet: temperature increasing in time (same as the thermal bath temperature) 

Steel cut at the outlet: zero normal temperature derivative 

Inlet to the cooling pipe (opposite side then the inlet to the capillary): constant velocity of the cooling 

water, constant temperature (same as the ambient temperature) 

Outlet from the cooling pipe: fixed pressure, zero normal temperature derivative  

Wall of the cooling pipe: noslip velocity condition, thermal insulation 

 
The COMSOL file with the computation settings has a name cooling.mph.  

The mesh used for this computation is depicted in Fig. 48.  

In Fig. 49 we can see temperature isolines in a cut of the cooling pipe for temperature increase    

0.1 K/s, cooling flowrate QC = 1300 mL/min, time t = 100 s and capillary flowrate 180,4 nL/min (inlet 

velocity of 0.38 mm/s) corresponding to reservoir volume 100 mm
3
. In Fig. 50 we can see a 

temperature distribution along the inner capillary wall for various times and for the same conditions as 

above. Fig. 51 shows a comparison of temperatures at the inner wall of the capillary and at the axis of 

the capillary (i.e. in the middle of the water channel). From the graphs we can see that the temperature 

decreases rapidly with a distance from the capillary inlet. We can also see that for the capillary 

flowrate 180,4 nL/min the temperature does not change significantly in the crossection of water 

channel inside the capillary. Graphs for a situation with    0.01 K/s instead of    0.1 K/s look 

similarly – just with the temperature scale divided by 10. 

Graphs Fig. 52-54 show the same quantities as above only with minimal cooling of QC = 13 mL/min 

instead of maximal cooling of QC = 1300 mL/min. We can observe a smaller temperature gradient in 

the cooling water near the inlet part of the capillary and we can see that the capillary is cooled down to 

the ambient temperature at a longer distance which is still quite short (will be quantified bellow). 

Graphs Fig. 55-56 show temperature isolines and comparison of temperatures at inner capillary wall 

and axis for temperature increase    0.1 K/s, cooling flowrate QC = 1300 mL/min, time t = 100 s and 

capillary flowrate 1804 nL/min (inlet velocity of 3.83 mm/s) corresponding to reservoir volume 

1000 mm
3
.  

Graphs Fig. 57-58 show the same quantities for capillary flowrate 18036 nL/min (inlet velocity of 38.3 

mm/s) corresponding to reservoir volume 10000 mm
3
. 

In these graphs we can see how the temperature isolines in the water channel inside the capillary 

change with increasing flowrate. We can also observe that the temperature distribution at the inner 

wall of the capillary almost does not depend on the capillary flowrate whereas the temperature 

distribution at the water channel axis depends on the flowrate – the higher is the flowrate the larger is 

the shift of the temperature curve to the higher values of distance from the capillary inlet.   
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Fig. 48 Mesh for cooling computations. From left is a ractangle corresponding to the water chanel 

inside the capillary, the capillary itself and the cooling water. 

 
Fig. 49 Temperature isolines for    0.1 K/s, QC = 1300 mL/min, t = 100s and flow velocity 

corresponding to reservoir volume 100 mm
3
. 
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Fig. 50 Temperature at wall of the water channel inside the capillary as a function of distance from the 

origin (the distance is in meters) for    0.1 K/s, QC = 1300 mL/min and flow velocity corresponding 

to reservoir volume 100 mm
3
. Curves for times 0 – 90s with step of 10 s. 

 

 
Fig. 51 Temperature at wall (green) and at axis (blue) of the water channel inside the capillary as a 

function of distance from the origin (the distance is in meters) for    0.1 K/s, QC = 1300 mL/min, 

t = 100s and flow velocity corresponding to reservoir volume 100 mm
3
. 
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Fig. 52 Temperature isolines for    0.1 K/s, QC = 13 mL/min, t = 100s and flow velocity 

corresponding to reservoir volume 100 mm
3
. 

 
Fig. 53 Temperature at wall of the water channel inside the capillary as a function of distance from the 

origin (the distance is in meters) for    0.1 K/s, QC = 13 mL/min and flow velocity corresponding to 

reservoir volume 100 mm
3
. Curves for times 0 – 90s with step of 10 s. 
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Fig. 54 Temperature at wall (green) and at axis (blue) of the water channel inside the capillary as a 

function of distance from the origin (the distance is in meters) for    0.1 K/s, QC = 13 mL/min, 

t = 100s and flow velocity corresponding to reservoir volume 100 mm
3
. 

 
Fig. 55 Temperature isolines for    0.1 K/s, QC = 1300 mL/min, t = 100s and flow velocity 

corresponding to reservoir volume 1000 mm
3
. Colors are suppressed. 
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Fig. 56 Temperature at wall (green) and at axis (blue) of the water channel inside the capillary as a 

function of distance from the origin (the distance is in meters) for    0.1 K/s, QC = 1300 mL/min, 

t = 100s and flow velocity corresponding to reservoir volume 1000 mm
3
. 

 
Fig. 57 Temperature isolines for    0.1 K/s, QC = 1300 mL/min, t = 100s and flow velocity 

corresponding to reservoir volume 10000 mm
3
. Colors are suppressed. 
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Fig. 58 Temperature at wall (green) and at axis (blue) of the water channel inside the capillary as a 

function of distance from the origin (the distance is in meters) for    0.1 K/s, QC = 1300 mL/min, 

t = 100s and flow velocity corresponding to reservoir volume 10000 mm
3
. 

 

Now we will verify the analytical formula (5.1.16) by comparing it with the numerical data. There is 

one unknown parameter γ in the formula. The parameter κ is calculated from stainless steel properties 

and its value is κ = 3.985 mm
2
/s. We will obtain the value of γ by fitting  the formula (5.1.16) to the 

numerical data. More precisely we will make an exponential fit of the derivative of temperature at the 

inner wall of the capillary with respect to time at a time t = 98 s. According to (5.1.16) this derivative 

should be 

 

  

  
   

  
 
 
  
                                                                          

   

From the fit we obtain the value of γ and then we can evaluate deviations of the theoretical formula 

(5.1.16) from the numerical data at various times and positions inside the capillary. 

The fits for various parameters are depicted in graphs Fig. 59-64. The values of       and γ are 

summarised in table 4 below for various parameters. We see that the values of γ are very similar for a 

given value of cooling flowrate, i.e. γ significantly depends only on the cooling flowrate . This is what 

we expect since γ is a proportionality coefficient between the tempearture difference capillary -  

ambient and heat flux from the capillary to the ambient.  

The table 4 also describes deviations of numerical data from the analytical formula. There are maximal 

deviations of temperature itself and also of its time derivative. There are maximal deviations at inner 

wall of the capillary and at the axis. Values for various times are listed. The maximal deviations of 

temperature are in % of the difference T(x) – T0 and the maximal deviations of temperature derivatives 

are in % of dT/dt. The deviation’s maxima are taken from a capillary part of length of 5 mm in case of 

maximal cooling and length of 10 mm in case of minimal cooling. The values in red color for the 

minimal cooling are taken from a length of 5 mm since the percentual deviations are increasing further 

but the the temperature difference T(x) – T0 is already so small that the deviations are not significant 

in its absolute value. 
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Further discussion can be found behind the table 4. 

 

 

 
Fig. 59 Exponential fit of temperature derivative with respect to time at the inner capillary wall at 

t = 98 s for    0.1 K/s, QC = 1300 mL/min and flow velocity corresponding to reservoir volume 

100 mm
3
. 

 

 

 
Fig. 60 Exponential fit of temperature derivative with respect to time at the inner capillary wall at 

t = 98 s for    0.1 K/s, QC = 13 mL/min and flow velocity corresponding to reservoir volume 

100 mm
3
. 
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Fig. 61 Exponential fit of temperature derivative with respect to time at the inner capillary wall at 

t = 98 s for    0.01 K/s, QC = 1300 mL/min and flow velocity corresponding to reservoir volume 

100 mm
3
. 

 

 

 
Fig. 62 Exponential fit of temperature derivative with respect to time at the inner capillary wall at 

t = 98 s for    0.01 K/s, QC = 13 mL/min and flow velocity corresponding to reservoir volume 

100 mm
3
. 
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Fig. 63 Exponential fit of temperature derivative with respect to time at the inner capillary wall at 

t = 98 s for    0.1 K/s, QC = 1300 mL/min and flow velocity corresponding to reservoir volume 

1000 mm
3
. 

 

 

 
Fig. 64 Exponential fit of temperature derivative with respect to time at the inner capillary wall at 

t = 98 s for    0.1 K/s, QC = 1300 mL/min and flow velocity corresponding to reservoir volume 

10000 mm
3
. 
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Tab. 4 Values of coeffitients obtained from exponential fits and maximal deviations of the analytical 

formula from numerical data.   

 

 
 

 

 
 

  
 

 Max. deviation of  

T 

Max. deviation of 

dT/dt 

1/mm 1/s  % of (T – T0) % of dT/dt 

  t = 10 s 50 s 98 s 10 s 50 s 98 s 

V = 100 mm
3
, k = 0.1 K/s 

QC = 1300 mL/min 
1.290 6.636 

wall 8.6 8.3 8.0 8.6 8.0 7.6 

axis 9.0 8.8 8.4 9.1 8.4 7.9 

V = 100 mm
3
, k = 0.1 K/s 

QC = 13 mL/min 
0.587 1.372 

wall 1.8 2.1 2.0 2.5 2.1 1.7 

axis -3.4 2.3 2.1 2.7 2.2 1.8 

V = 100 mm
3
, k = 0.01 K/s 

QC = 1300 mL/min 
1.282 6.550 

wall 8.0 8.0 8.0 8.1 8.0 8.0 

axis 8.1 8.1 8.1 8.2 8.1 8.1 

V = 100 mm
3
, k = 0.01 K/s 

QC = 13 mL/min 
0.583 1.354 

wall -1.9 2.0 2.1 2.2 2.2 2.1 

axis -5.4 2.1 2.2 2.3 2.3 2.2 

V = 1000 mm
3
, k = 0.1 K/s 

QC = 1300 mL/min 
1.279 6.519 

wall 8.6 8.4 8.0 8.7 8.0 7.6 

axis 11.6 11.4 11.0 11.7 11.0 10.4 

V =10000mm
3
, k = 0.1 K/s 

QC = 1300 mL/min 
1.250 6.227 

wall 10.2 9.9 9.5 10.2 9.4 8.9 

axis 35 34 34 35 34 33 

 

 

5.3  Conclusions on effect of cooling 
 

From the table 4 we see that the values obtained from numerical simulation are in satisfactory 

agreement with the values obtained by analytical estimate besides the situation with the largest 

reservoir volume 10000 mm
3
 which in fact will not be realised anyway. Assuming a temperature 

distribution according to formula (5.1.16) which changes only in longitudinal direction inside the 

capilary we have a maximal error of around 10 % in every situation. 

If we use the formula (5.1.16) to evaluate the contribution to mass flow (the third term in (3.1.7)) we 

obtain 

 

 
       

  
  

 

     

         
  

  
     

   

   
    

 

 
    

 

  
                          

 

where S is the crossection of the water channel inside the capillary. Coming to formula (5.1.3) we 

made the following approximations                       which are well satisfied after 

several seconds of evolution. We can introduce an effective cooling volume and effective cooling 

expansion factor as 

 

                              
  

  
     

   

   
    

 

 
    

 

  
                     

 

Then we have  
 

 
       

  
  

 

     

                                                                     

 

The value of effective cooling length      is around 0.8 mm for the strongest cooling and around 

1.7 mm for the weakest cooling as we can calculate from the values in table 4. The capilary diameter is 

0.1 mm so we obtain                 for the strongest cooling and                 for the 
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weakest cooling. If we look to the formula (3.1.7) we see that for a linear temperature increase the 

main part of the mass flow (the first term) is given as  

 
  

  
    

  

  
                                                                         

 

where    is the volume of the heated part of the system. The contribution of cooling to the mass 

flowrate therefore is  
  

 
 

           

   
  
  

    
 

     

  
                                                            

 

In table below we express the contribution of cooling to the flowrate in percents. 

 

   (mm
3
) QC = 1300 mL/min QC = 13 mL/min 

17 0.035 % 0.076 % 

63 0.0095 % 0.021 % 

1003 0.0006 % 0.0013 % 

 

Tab. 5 Percentual part of mass the flowrate generated in the cooling pipe. 

 

The flowrate contribution coming from a thermal expansion of the cooled part of the capillary which is 

given by the fourth term in the formula (3.1.7) is considered negligible.   

6  Conclusions 
 
Five basic components of flowrate have been identified. The main one (first term of (3.1.7)) can be 

calculated from measured temperature inside the reservoir as a function of time, from known reservoir 

volume and from known water properties (temperature dependence of density). The other components 

are – a) correction due to inhomogeneity of thermal expansion coefficient of water (second term of 

(3.1.7)) which is directly connected to inhomogeneity of temperature in the reservoir, b) correction due 

to inhomogeneity of temperature increase rate (third term of (3.1.7)), c) correction due to thermal 

expansion of reservoir walls and d) correction due to the cooling process outside the thermal bath. 

The corrections a) and b) have been modeled numerically and have been identified as significant 

contributions to the flowrate. These corrections have to be taken into account also when we want to 

determine the evolution of temperature in the thermal bath which leads to a stable flowrate. The 

correction c) was described by an analytical formula. The correction d) has been modeled numerically 

and has been identified as not so important and negligible as compared to the other contributions.     


