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1 Introduction

The aim of this text is tdormulate a physical model of processes which occur in the-ih@amno
generator of VSL which is based on a thermal expansion of water enclosed in a titanium reservoir, to
identify the components of the flowrate which cannot be calculated analytically aodhfmute these
components numerically using a COMSOL software.

2 Physical model of the nano -flow generator

If m(t) is a mass contained in the system in front of the meter under test (heated reservoir, cooling
pipe, connecting parts) as a functiortiofe and; . is a density of water coming from the system in
front of the MUT then the volumetric flow rate coming to the MUT is given by
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The mass conta@ in the system is given as
a o " Qo c]

whereV(t) is the interior space of the system (inside the reservoir and tubing) which can change with
time due to thermal expansion of the reservoir and tubing aifw is a density of water inside the
system as a function of time and position. The time dévevatf mass inside the system is then given
as
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wherd @0 is a boudary surface of the system @hafd is a velocity of points athe boundary of
the systemFor example in the titanium reseroirwo is the boundary surface between water and

titanium andP afd is velocity of points athis boundary which are moving due to the thermal

expansion of the titanium reservaoir.

The complete system consists of a part which is heated in thermal bath and a part where the water is
cooled to the ambient temperature again. We can split the space of the@ystamd its boundary

T @0 into two parts corresponding to the heatedginH) and cooled (index C) part. Then we get
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The first term is discussed in Sectioar®lthe second term is discussed in Sectionhe third and
fourth terms are smadind they are discussed in SectioinSact, in case the cooling down to ambient
temperature is instantaneous, these terms are zero. These terms are also zef¢xirt)oager the
capillary is not a function of time.



3 Thermal expansion of water in the reservoir

Now we wil focus on the first term of (2)4n more detailThis term is the main term in flowrate
calculation and describes the thermal expansion of watke reservoir itself.

3.1 Physical model for the thermal expansion term

In the reservoir there is a thermometer inserted. We dé@pfethe temperature aseasured by this
thermometerThis temperature is a function of time. Consider the temperature field in the system
T(x,t) in a form
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The water density is a function of temperature and pressuraedlect the density changes due to

pressure change and we consider only the temperature dependence of the Idetimsgtywork the
Tanaka formuldor degassed watevas usedAccording to this formula we have
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whereT is temperature iAC andc oo Yo mohd onpwxhd v wBEPhd
P& T YPIPO wwddx pA® 8The time derivative of the density is then given as
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By means of a Taylor expansiohettemperature derivative of density can be written as
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where the second and higher order terms are neglé€ctedbining equations (3.1.3) and (3.1.4) we
have
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Droppingthe second order terme obtain
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Therefore for the first term i(2.4) we obtdn
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The first term of this formula is the main and the largest die second ra third terns are
correction terms.The second term represents a contribution of-lmumogeneity of the thermal
expansiorcoefficienf T “M.el JT “¥ a function ofposition inspace. Tie third term represents a
contribution of noFhomogeneity of temperature increase.! Y as a function ofposition inspace

In case oluniformtemperature increase, thisrtewill go to zero.

The second term reduces with reducing——. Relatively, this term reduces when the ratio of

over reduces. From equation (3.1.2) we have:
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In the below figure the first and second order derivative of the density with respect to temperature are
plotted. From this picture it follows that the second correction term reduces, absolutely and relatively
compared to the first term, when the temperature increases.
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In theformula(3.1.7) all quantities are known or measured besidesntiegrals of temperature and its
time derivative. Estimations for these integrals are subject of numerical simulkatioribus the goal
of this report The volume of the heated part of the systemo is given by a measurement of this
volume for certan temperature and by therhexpansion of the materials of the heated g@etnium
for reservoir, stainless steel for capilasge Section)4Theheat conductivity of titanium and stainless
steel is large compared to water and therefore the tempedasenot differ so much in various parts
of the metals as can be also seen from the numerical simuléfians3. Therefore we consider the
temperature in the titanium resevoir and in the steel capilatra function oposition inspace If we
denoteTg(t), resp.Tc(t) the temperature ithe titaniumreservoir, resp. in capilary and we denbge
andbc volume thermal expansion coefitients of titanium and stainlessattaaibient temperatui®,
we obtain
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wherew "Y andw “Y are the volumeof water filledcavitiesinsidethetitaniumreservoir (R) and
inside the capilary (C) at temperaturéY. These volumesvill be known fromdifferential mass
measuremest Tg(t) is measured by thermometer installed in a copper mounting attached to the
titanium part and¢(t) should be with high accuracy the temperaure of the thermal bathcépiiary

is in direct contact witlthe thermal bathBecause the volume of the reservoir is larger compared to
capilary, the second term will not be considered in this report.

3.2 General properties of the temperature distribution for the linear case

Now we will look to the temperature integrals in maletail. Since the temperature incrednethe
thermal baths not far fromlinear functionit is useful to study the behavior for the linear case

Consider a systemith heat conductiotut without heat convectiarFurther, thetemperature at the
boundary of this system which is given by a function
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Even if we have heat convection of the moving fluid this effect will have very small influeribe t
overall temperature distribution in the reservoir. Also the parts of the boundary sysim which

are not in direct contact wittme thermal bath are very small as compared to the rest (just the surfaces
which are intersections of the water level in the bath with systen). We will now show some
properties of thesysem assuming that it consists of one metarigHowever,the resit can be
generalised to aysem composed of several materials with continuous temperature and heat flux at
their contact surface¥he heat conduction equation lasform
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where g)fki/s( jt.h@r mal conductivity ofsitsheatcapacty er i al
at constant pressyrandy is the Laplace operatoWe look for a solution of the heat conduction
equation(3.2.2 in theform (educated guess based on the numerical simulations)
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where the index denotes a spatial part of the temperature function.

Inserting this function into equatidB.2.2)we find that itis a solution if the spatial part satisfite
equation
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with boundaryvalue of “Y @ equal toT,. In the numerical simulations we see that tbvaperature
distribution approaches the form (3.2e8ter some time if the initial temperatureTiseverywhere and
the boundary tempeare is given by the formula (3.32.1

Intermezzo, fiwe know the solutiofiY of the Poisson equation (3.2#rc er t ai n ythdnu e
the solutiodY f or an ot h exandtkelsame boandaryléenditioh Y is given as
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as can be verifiethy direct examinimg othe boundary condition and inserting the solution into the
equation 8.2.9.

Since the time evolution is linear everywhere in the heated part ey$ten according to (3.2)3also

for the functionTy(t) we obtain
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where’Y @ is the”Y @ function evaluated at the temperature measurement fusirtg equations
(3.1.1), (3.2.3) and (3.2.6ve get
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This impliesthatY"Yafo does not depend on titn€This is confirmed by the numerical simulations,
the third correction terrm (3.1.7)goes to zero for increasing tim&jirthermoreijt impliesthatusing
the formula (3.2.pwe obtain the following scaling properties ¥6iY aip
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Now suppose that the temperature of the thermal bath is not exactlyflineton of time. Consider
that the temperature at the boundary of the heated part of our system is given as
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The functionY'Ydfd thencan be written as
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whereY'Y @ is the functionY'Yad how it would be iy © Tt i.e. in linear case, andY ¢id

is a correction for nonlinearitfL.he functiony™Y W satisfies the scaling lav8@2.8. For nearly linear
temperature increasee.Y 0 small compared to, theY’Y atd function will be small compared
oYY ®.

3.3 Numerical simulations for the temperature distribution

Simulations have been done for two reservoir geométrimse with volume ofipprox 64 mnd (see
Figure 2)and second with volume @fpprox 1003 mm(see Figure 6)The geometries were created
according to drawings no. 1209Q6i 1209065 of VSL. Basic dinensions, geometry fothe
simulation and mesh are depicted in Fi@. 1

For each geometry simulations have been done fortémoperature boundary conditiofsimmarized
in Tab.1). Two (no. 1 and 2forrespond t@ linear temperature increase of 0.01 K/s andkisl The
othertwo (no. 3 and 4forrespond t@ nonlinear temperature increase according to formaldsb.

1. These formulas are obtained fromthe requirement ofa constant mass flowrate at the outlet

of



assmingthat thenon homogeneousxpansion coefficiersind temperature increasan be neglected
(henceonly the first term of §.1.7) is considered)Note, his assumption turned out to r&ccurate

for the larger temperature gradie(dse next series fifjures)

In table 1 the valus of 0 arethe expected valseof the mass flowrate and are the reservoir
volumes. The values ofa and b are obtained from linear fit of a temperature derivative of water
density as a function of temperatufehe boundary condition no. 1 can be considered as linear
approximation of boundary condition no. And similarly the boundary condition no. 2 can be
considered as linear approximation of the boundary condition reor4a volume of 1000 mirand

the thid boundary condition, a flow rate of 120 nl/nsimouldbe obtained.

?]g formula parameters ﬂf%?mr

1 YOY | ® | i 110- 130
pg/min

5 Y'Y |8 | TEPOA 1300- 1700
pg/min

3 1Y Y §d G c0 | meed |V jo mimcaE i | 120ug/min

4 Y GH & c0j oo | 0jo mqod i 1500pg/min

Y ocwpwh GO cgYh O mWno@® U

Tab. 1Boundary conditions for temperatufighe conditions b.c. 3 and b4 were formulated in order
to obtain approximately constant mass flow@tgwhich is given as the value Q/V multiplied by
the reservoir volume.lBwratevaluesfor reservoir volume of 1000 nirarein the last columnThe
linear conditiond and 2does not lead to constant flowrate but the b.s. dimilar to bc.3 and leads

to similar flowrates anf.c. 2 leads tasimilar flowrates ad.c. 4.

At the outlet from the capillary a zero gradient boundary condition for tempetaure was applied. For
velocity field a noslip condition was applied at walls and fixed pressure condition was applied at the
capillary outlet.
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Fig. 1 Middle reservoir dimensions accrding to the drawing no. 120906
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Fig. 2Geometry of the middle reservoir used for simulations.
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Fig. 3Mesh for the middle reservoir.



Fig. 4Mesh for the middle reservdirdetail of capillary inlet
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Fig. 5Dimensions of the large reservoir accrding to the drawing no. 120906
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Fig. 6Geometry of the large reservoir used for simulations.
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Fig. 7Mesh for the large reservoir.
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Fig. 8Mesh for the large reservdirdetail of capillary inlet.

The aim of the simulationis to obtain the tempearture distribution in the reservoir fam@ion of

time in order to be able to calculate the second and the third term of the foBriufa (n the formula

(3.1.7 the temperaturely (t) measured by a thermometer inside the reservoir occurs. In the
simulations this temperature was represented by a temperature at the inner wall of the reservoir in the
point of the center of the end of stainless steel tube which contains the thermonestguoiits 1 in

Fig. 15).
Tables for this temperature as a function of time were obtained for each simulation. Furthermore tables
for average temperatuiig(t) in the water part of a geometry as a function of time were obtained for

each simulation. Thevarage temperature is calculated as an integral of the temperature over the water
volume devided by the water volume. The second ter8.@f4 can then be expressed as

YYam' Qo o 608°Y06 Y o 8 oD
As discussed in Section 3.2, for a constant temperature gradient, the spatial temperature distribution
can be described as:
Yoo YYo YVYdd o}P T
Therefore, an approximation for tagerage temperature,(f), is given as:
YO @YO QY 0

where Topper(t) is the average temperature measured in the copper mounting Bliteksatively, the
average temperature can be given as:

12
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where c ionstant in case of a constant temperature increase.

The simulations have been done with fixed reservoir geometry without thermal expansion of the
reservoir walls. In this case the third term ®fl(7) can be expressed as

TYYao, 1 U B
—QOw —, YYao Qw w —."YO Y 0 8 oD&,
T o T O T o

The time derivative has beeerivednumerically.Note, these correction terms can also be estimated
for calibration work. The average temperature and time derivatives then follow from (a weighted)
averaged of the installed temperature sensors.

Next the simulation results amgesentedGraphsFig. 911 represent the temperature distribution for
the middle reservoir, bounda conditions no. 2 (see Tab) Bnd time 100 s. The temperature
distribution for this case is typical for all simulated cases for the middle resefargraphs for
nonlinear casedo not differ much from their linear counterpartdence, the temperature increase is
indeed not far from linea he case with b.c. no. 1 differs from the cagth b.c. no. 2 by temperature
rescalingi the temperature scale is divided by ftb b.c. no.1. This corresponds to the scaling
properties of temperatuggven by (3.2.8

Graphs Fig. 124 represent the temperature distribution for the large reservoir, boundary conditions
no. 2 and time 80 §.he temperature distribution for this case is typical for all simulated cases for the
large reservoir similarly as for the case of the middle reservoir with the same scaling law.

Graphs Fig.16-23 show temperate in points depicted in Fig. 1& a fundbn of time. These are
three points selected for each reservoir sipeint no.1 isrepresenting the thermometer installation
i.e. the point wher@), is taken point no.2 is the center of the reservoir and point r®a? the end of
one of the capillaes.

Graphs Fig.24-47 show how the paicular terms of the formula (3.1.2volve in time for various
cases. For each case three graphstaomen. The first graph (Fig. 24, 27, 30, 33, 36, 39, 42shbéws
the first term of (3.1)and he sum of althree terms of (3.1)7as a function ofime. The second
graph (Fig. 25, 28, 31, 34, 37, 40, 43, 46) shows the second term of {8.%7f the first term as a
function d time. The third graph (Fig. 26, 29, 32, 35, 38, 41, 43 shows the third termfd3.1.7) in
% of the first term as a function of time.

The second and the third teofi(3.1.7 show a dampedscilatory behaviour. The magnitude of these
terms is significant for the flowrate determination with the required accuracyhe cases witlinear
temperature increase the temperature differévio® “Y 0 oscilates around certain constant value
and approaches this value with increasing tifable 2summarises some of the features of the
evolution ofthe second and the third teohthe formula (3.1.) The quantities in the tabletave the
following meaning:

- tx€ times at whi ch the osci ldeftectionnppintsh(fast e an

derivative changes sigaye listed for the middlereservoir and only the firgtirning point is
listed for the large reservoir)
- Q2ty € value of t hgin®efthefirstitermer m for t = 't
- Q2(80s) € value of the second term for t =
- PR (i nf) € the value "Whbi €trho for dargeatpnpsrfos bnean e d
temperature increase the quantityd  “Y 0 should converge to certain value which is in
the table, for nonlinear increase the convergence is not ensured and a rahge of Y o
is given in the table for range afres (4080) s
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Fig. 9 Temperature distribution for midd{€4 mn7) reservoir b.c. no. 20.1 K/s)after100 s.The
black line is thg€semi) axisymmeyrline, the blue line is the transversal line.
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Fig. 10Temperature distribution for the middle reserybic. no. 20.1 K/s)after100 si transversal
line in the middlg64 mnd) of the cylinder.
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Line Graph: Temperature (K)
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Fig. 11 Temperature distribution for theiddle (64 mrm) reservoirb.c. no.2 (0.1 K/s)after 100 si
axis of the cylinderThe apparent large osciliations in the middle part are most probably a numerical
artifact.

Fig. 12Temperature distribution for the large resery@®03 mni), b.c. no2 (0.1 K/sand time 8Gs.
The black line is the (semi) axisymmetine, the blue line is the transversal line.
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