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1  Introduction  
 

The aim of this text is to formulate a physical model of processes which occur in the nano-flow 

generator of VSL which is based on a thermal expansion of water enclosed in a titanium reservoir, to 

identify the components of the flowrate which cannot be calculated analytically and to compute these 

components numerically using a COMSOL software.  

2  Physical model  of the nano -flow generator  
 

If m(t) is a mass contained in the system in front of the meter under test (heated reservoir, cooling 

pipe, connecting parts) as a function of time and ɟout is a density of water coming from the system in 

front of the MUT then the volumetric flow rate coming to the MUT is given by  

 

ὗ
ρ

”

Ὠά

Ὠὸ
Ȣ                                                                      ςȢρ 

 

The mass contained in the system is given as 

 

άὸ ”ὼȟὸὨὠ                                                                ςȢς

 

 

 

where V(t) is the interior space of the system (inside the reservoir and tubing) which can change with 

time due to thermal expansion of the reservoir and tubing and ”ὼȟὸ is a density of water inside the 

system as a function of time and position. The time derivative of mass inside the system is then given 

as 
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                                       ςȢσ 

 

where ‬ὠὸ is a boudary surface of the system and ‚ᴆὼȟὸ is a velocity of points at the boundary of 

the system. For example in the titanium reservoir ‬ὠὸ is the boundary surface between water and 

titanium and ‚ᴆὼȟὸ is velocity of points at this boundary which are moving due to the thermal 

expansion of the titanium reservoir.  

The complete system consists of a part which is heated in thermal bath and a part where the water is 

cooled to the ambient temperature again. We can split the space of the system ὠὸ and its boundary 

‬ὠὸ into two parts corresponding to the heated (index H) and cooled (index C) part. Then we get 
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The first term is discussed in Section 3 and the second term is discussed in Section 4. The third and 

fourth terms are small and they are discussed in Section 5. In fact, in case the cooling down to ambient 

temperature is instantaneous, these terms are zero. These terms are also zero in case T(x, t) over the 

capillary is not a function of time.  

 

  



4 
 

3  Thermal expansion of water in the reservoir  
 
Now we will focus on the first term of (2.4) in more detail. This term is the main term in flowrate 

calculation and describes the thermal expansion of water in the reservoir itself. 

 

3.1  Physical model for the thermal expansion term  
 
In the reservoir there is a thermometer inserted. We denote TM(t) the temperature as measured by this 

thermometer. This temperature is a function of time. Consider the temperature field in the system 

T(x,t) in a form 

 

Ὕὼȟὸ Ὕ ὸ ЎὝὼȟὸȢ                                                   σȢρȢρ 
 

The water density is a function of temperature and pressure. We neglect the density changes due to 

pressure change and we consider only the temperature dependence of the density. In this work the 

Tanaka formula for degassed water was used. According to this formula we have 

 

” ὥ ρ
Ὕ ὥ Ὕ ὥ

ὥ Ὕ ὥ
                                              σȢρȢς 

 

where T  is temperature in °C and ὥ σȢωψσπσυ ᴈȟ ὥ σπρȢχωχ ᴈȟὥ υςςυςψȢω ᴈ ȟ ὥ
φωȢστψψρ ᴈȟ ὥ ωωωȢωχρτ ὯὫά Ȣ The time derivative of the density is then given as  
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By means of a Taylor expansion, the temperature derivative of density can be written as 
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where the second and higher order terms are neglected. Combining equations (3.1.3) and (3.1.4) we 

have 
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Dropping the second order term we obtain 
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Therefore for the first term in (2.4) we obtain 
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The first term of this formula is the main and the largest one. The second and third terms are 

correction terms. The second term represents a contribution of non-homogeneity of the thermal 

expansion coefficient ‬”‬Ὕϳ , i.e. ‬”‬Ὕϳ  is a function of position in space. The third term represents a 

contribution of non-homogeneity of temperature increase, i.e. ‬Ὕ‬ὸϳ  is a function of position in space. 

In case of uniform temperature increase, this term will go to zero.  

 

The second term reduces with reducing . Relatively, this term reduces when the ratio of 

 over  reduces. From equation (3.1.2) we have: 
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In the below figure the first and second order derivative of the density with respect to temperature are 

plotted. From this picture it follows that the second correction term reduces, absolutely and relatively 

compared to the first term, when the temperature increases.  
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In the formula (3.1.7) all quantities are known or measured besides the integrals of temperature and its 

time derivative. Estimations for these integrals are subject of numerical simulations and thus the goal 

of this report. The volume of the heated part of the system ὠ ὸ is given by a measurement of this 

volume for certain temperature and by thermal expansion of the materials of the heated part (titanium 

for reservoir, stainless steel for capilary, see Section 4). The heat conductivity of titanium and stainless 

steel is large compared to water and therefore the temperature does not differ so much in various parts 

of the metals as can be also seen from the numerical simulations (Tab. 3). Therefore we consider the 

temperature in the titanium resevoir and in the steel capilary not a function of position in space. If we 

denote TR(t), resp. TC(t) the temperature in the titanium reservoir, resp. in capilary and we denote ɓR 

and ɓC volume thermal expansion coefitients of titanium and stainless steel at ambient temperature T0, 

we obtain  

 

ὠ ὸ ὠ Ὕ ρ ‍ Ὕ ὸ Ὕ ὠ Ὕ ρ ‍ Ὕ ὸ Ὕ                 σȢρȢψ 

 

where ὠ Ὕ  and ὠ Ὕ  are the volumes of water filled cavities inside the titanium reservoir (R) and 

inside the capilary (C) at temperature Ὕ. These volumes will be known from differential mass 

measurements. TR(t) is measured by thermometer installed in a copper mounting attached to the 

titanium part and TC(t) should be with high accuracy the temperaure of the thermal bath if the capilary 

is in direct contact with the thermal bath. Because the volume of the reservoir is larger compared to 

capilary, the second term will not be considered in this report. 

 

3.2  General properties of the temperature distribution  for the linear case  
 

Now we will look to the temperature integrals in more detail. Since the temperature increase in the 

thermal bath is not far from linear function it is useful to study the behavior for the linear case. 

 

Consider a system with heat conduction but without heat convection. Further, the  temperature at the 

boundary of this system which is given by a function 

 

Ὕὸ Ὕ ‌ὸȢ                                                               σȢςȢρ 

 

Even if we have heat convection of the moving fluid this effect will have very small influence to the 

overall temperature distribution in the reservoir. Also the parts of the boundary of our system which 

are not in direct contact with the thermal bath are very small as compared to the rest (just the surfaces 

which are intersections of the water level in the bath with our system). We will now show some 

properties of the system assuming that it consists of one metarial . However, the result can be 

generalised to a system composed of several materials with continuous temperature and heat flux at 

their contact surfaces. The heat conduction equation has the form 

 
‬Ὕ

‬ὸ
‖flὝ                                                                       σȢςȢς 

 

where ə=k/(ɟ.Cp) (k is thermal conductivity of the material, ɟ is its density and Cp is its heat capacity 

at constant pressure) and Ў is the Laplace operator. We look for a solution of the heat conduction 

equation (3.2.2) in the form (educated guess based on the numerical simulations) 

 

Ὕὼȟὸ Ὕ ὼ ‌ὸ                                                         σȢςȢσ 
 

where the index x denotes a spatial part of the temperature function.  

Inserting this function into equation (3.2.2) we find that it is a solution if the spatial part satisfies the 

equation 

 

flὝ
‌

‖
                                                                          σȢςȢτ 
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with boundary value of  Ὕ ὼ equal to T0. In the numerical simulations we see that the temperature 

distribution approaches the form (3.2.3) after some time if the initial temperature is T0 everywhere and 

the boundary temperature is given by the formula (3.2.1).  

Intermezzo, if we know the solution Ὕ  of the Poisson equation (3.2.4) for certain value of Ŭ=Ŭ1 then 

the solution Ὕ  for another value of Ŭ=Ŭ2  and the same boundary condition Ὕ Ὕ is given as 

 

Ὕ ὼ
‌

‌
Ὕ ὼ Ὕ ρ

‌

‌
                                             σȢςȢυ 

 

as can be verified by direct examinimg of the boundary condition and inserting the solution into the 

equation (3.2.4).  

Since the time evolution is linear everywhere in the heated part of the system according to (3.2.3) also 

for the function TM(t) we obtain 

 

Ὕ ὸ Ὕ ὼ ‌ὸ                                                            σȢςȢφ 

 

where Ὕ ὼ  is the Ὕ ὼ function evaluated at the temperature measurement point. Using equations 

(3.1.1), (3.2.3) and (3.2.6) we get  

 

ЎὝὼȟὸ Ὕ ὼ Ὕ ὼ Ȣ                                                    σȢςȢχ 

 

This implies that ЎὝὼȟὸ does not depend on time! (This is confirmed by the numerical simulations, 

the third correction term in (3.1.7) goes to zero for increasing time.) Furthermore, it implies that using 

the formula (3.2.5) we obtain the following scaling properties for ЎὝὼȟὸ 

 

ЎὝ ὼȟὸ
‌

‌
ЎὝ ὼȟὸȢ                                                       σȢςȢψ 

 

Now suppose that the temperature of the thermal bath is not exactly linear function of time. Consider 

that the temperature at the boundary of the heated part of our system is given as 

 

Ὕ Ὕ ‌ Ў‌ὸȢὸȢ                                                     σȢςȢω 

 

The function ЎὝὼȟὸ then can be written as 

 

ЎὝὼȟὸ ЎὝ ὼ ЎὝὼȟὸ                                              σȢςȢρπ 
 

where ЎὝ ὼ is the function ЎὝὼȟὸ how it would be if Ў‌ὸ π, i.e. in linear case, and ЎὝὼȟὸ 

is a correction for nonlinearity. The function ЎὝ ὼ satisfies the scaling law (3.2.8). For nearly linear 

temperature increase, i.e. Ў‌ὸ small compared to ‌,  the ЎὝὼȟὸ function will be small compared 

to ЎὝ ὼ.  

 

3.3  Numerical simulations  for the temperature distribution  
 

Simulations have been done for two reservoir geometries ï one with volume of approx. 64 mm
3
 (see 

Figure 2) and second with volume of approx. 1003 mm
3 
(see Figure 6). The geometries were created 

according to drawings no. 120906-1 ï 120906-5 of VSL. Basic dimensions, geometry for the 

simulation and mesh are depicted in Fig. 1-8.  

For each geometry simulations have been done for four temperature boundary conditions (summarized 

in Tab. 1).  Two (no. 1 and 2) correspond to a linear temperature increase of 0.01 K/s and 0.1 K/s. The 

other two (no. 3 and 4) correspond to a nonlinear temperature increase according to formulas in Tab. 

1. These formulas are obtained from the requirement of a constant mass flowrate at the outlet, 
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assuming that the non homogeneous expansion coefficient and temperature increase can be neglected 

(hence, only the first term of (3.1.7) is considered). Note, this assumption turned out to be inaccurate 

for the larger temperature gradients (see next series of figures).  

In table 1 the values of ὗ  are the expected values of the mass flowrate and ὠ are the reservoir 

volumes. The values of a and b are obtained from linear fit of a temperature derivative of water 

density as a function of temperature. The boundary condition no. 1 can be considered as linear 

approximation of boundary condition no. 3. And similarly the boundary condition no. 2 can be 

considered as linear approximation of the boundary condition no. 4. For a volume of 1000 mm
3
 and 

the third boundary condition, a flow rate of 120 nl/min should be obtained.     

 

b.c. 

no. 
formula parameters 

flowrate for 

1000 mm
3
 

1 
Ὕ Ὕ ‌Ȣὸ ‌ πȢπρ ὑȾί 110 - 130 

µg/min 

2 
Ὕ Ὕ ‌Ȣὸ ‌ πȢρ ὑȾί 1300 - 1700 

µg/min 

3 Ὕ Ὕ ὦὥϳ ὦὥ ςὗ ὠὥȢὸϳϳ  ὗ ὠ πȢππςπ ὯὫȢά ίϳ  120 µg/min 

4 Ὕ Ὕ ὦὥϳ ὦὥ ςὗ ὠὥȢὸϳϳ  ὗ ὠ πȢπςυ ὯὫȢά ίϳ  1500 µg/min 

Ὕ ςωσȢρυ ὑȟ ὦὥ ςρȢχχ ὑȟ ὥ πȢππωυυ ὯὫȢά ὑϳ  

   

Tab. 1 Boundary conditions for temperature. The conditions b.c. 3 and b.c. 4 were formulated in order 

to obtain approximately constant mass flowrate Qm which is given as the value of Qm/V multiplied by 

the reservoir volume. Flowrate values for reservoir volume of 1000 mm
3
 are in the last column. The 

linear conditions 1 and 2 does not lead to constant flowrate but the b.c. 1 is similar to b.c.3 and leads 

to similar flowrates and b.c. 2 leads to similar flowrates as b.c. 4. 

 

At the outlet from the capillary a zero gradient boundary condition for tempetaure was applied. For 

velocity field a noslip condition was applied at walls and fixed pressure condition was applied at the 

capillary outlet.  

 

 
Fig. 1 Middle reservoir dimensions accrding to the drawing no. 120906-1. 
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Fig. 2 Geometry of the middle reservoir used for simulations.  

 

 

 
Fig. 3 Mesh for the middle reservoir. 

 



10 
 

 
 

Fig. 4 Mesh for the middle reservoir ï detail of capillary inlet. 

 

 
Fig. 5 Dimensions of the large reservoir accrding to the drawing no. 120906-5. 
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Fig. 6 Geometry of the large reservoir used for simulations. 

 
Fig. 7 Mesh for the large reservoir. 
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Fig. 8 Mesh for the large reservoir ï detail of capillary inlet. 

 

The aim of the simulations is to obtain the tempearture distribution in the reservoir as a function of 

time in order to be able to calculate the second and the third term of the formula (3.1.7). In the formula 

(3.1.7) the temperature TM (t) measured by a thermometer inside the reservoir occurs. In the 

simulations this temperature was represented by a temperature at the inner wall of the reservoir in the 

point of the center of the end of stainless steel tube which contains the thermometer wires (points 1 in 

Fig. 15).  

 

Tables for this temperature as a function of time were obtained for each simulation. Furthermore tables 

for average temperature TA(t) in the water part of a geometry as a function of time were obtained for 

each simulation. The average temperature is calculated as an integral of the temperature over the water 

volume devided by the water volume. The second term of (3.1.7) can then be expressed as  

ЎὝ ὼȟὸὨὠ

 

ὠ ὸȢὝ ὸ Ὕ ὸȢ                                           σȢσȢρ 

 

As discussed in Section 3.2, for a constant temperature gradient, the spatial temperature distribution 

can be described as: 

 

ЎὝὼȟὸ ЎὝ ὼ ЎὝὼȟὸ                                              σȢςȢρπ 
 

Therefore, an approximation for the average temperature, TA(t), is given as: 

 

Ὕ ὸ ὧὝ ὸ  ὧὝ ὸ 

 

where Tcopper (t) is the average temperature measured in the copper mounting blocks. Alternatively, the 

average temperature can be given as: 
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Ὕ ὸ Ὕ ὸ  ὧ 
 

where c is constant in case of a constant temperature increase. 

 

The simulations have been done with fixed reservoir geometry without thermal expansion of the 

reservoir walls. In this case the third term of (3.1.7) can be expressed as  
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‬ὸ
Ὠὠ

 
‬

‬ὸ
ЎὝ ὼȟὸὨὠ

 

ὠ
‬

‬ὸ
Ὕ ὸ Ὕ ὸȢ                  σȢσȢς 

 

The time derivative has been derived numerically. Note, these correction terms can also be estimated 

for calibration work. The average temperature and time derivatives then follow from (a weighted) 

averaged of the installed temperature sensors.  

 

Next the simulation results are presented. Graphs Fig. 9-11 represent the temperature distribution for 

the middle reservoir, boundary conditions no. 2 (see Tab. 1) and time 100 s. The temperature 

distribution for this case is typical for all simulated cases for the middle reservoir. The graphs for 

nonlinear cases do not differ much from their linear counterparts.  Hence, the temperature increase is 

indeed not far from linear. The case with b.c. no. 1 differs from the case with b.c. no. 2 by temperature 

rescaling ï the temperature scale is divided by 10 for b.c. no. 1. This corresponds to the scaling 

properties of temperature given by (3.2.8). 

 

Graphs Fig. 12-14 represent the temperature distribution for the large reservoir, boundary conditions 

no. 2 and time 80 s. The temperature distribution for this case is typical for all simulated cases for the 

large reservoir similarly as for the case of the middle reservoir with the same scaling law. 

 

Graphs Fig. 16-23 show temperature in points depicted in Fig. 15 as a function of time. These are 

three points selected for each reservoir size ï point no.1 is representing the thermometer installation ï 

i.e. the point where TM is taken, point no.2 is the center of the reservoir and point no.3 is at the end of 

one of the capillaries. 

 

Graphs Fig. 24-47 show how the particular terms of the formula (3.1.7) evolve in time for various 

cases. For each case three graphs are shown. The first graph (Fig. 24, 27, 30, 33, 36, 39, 42, 45) shows 

the first term of (3.1.7) and the sum of all three terms of (3.1.7) as a function of time. The second 

graph (Fig. 25, 28, 31, 34, 37, 40, 43, 46) shows the second term of (3.1.7) in % of the first term as a 

function of time. The third graph (Fig. 26, 29, 32, 35, 38, 41, 44, 47) shows the third term of (3.1.7) in 

% of the first term as a function of time. 

 

The second and the third term of (3.1.7) show a damped oscilatory behaviour. The magnitude of these 

terms is significant for the flowrate determination with the required accuracy. For the cases with linear 

temperature increase the temperature difference Ὕ ὸ Ὕ ὸ oscilates around certain constant value 

and approaches this value with increasing time. Table 2 summarises some of the features of the 

evolution of the second and the third term of the formula (3.1.7). The quantities in the table 2 have the 

following meaning:    

- tex é times at which the oscilations have an extreme (first two deflection points (first 

derivative changes sign) are listed for the middle   reservoir and only the first turning point is 

listed for the large reservoir) 

- Q2(tex) é value of the second term for t = tex in % of the first term 

- Q2(80s) é value of the second term for t = 80 s in % of the first term 

- ȹTav (inf) é the value which is approached by Ὕ ὸ Ὕ ὸ for large times; for linear 

temperature increase the quantity Ὕ ὸ Ὕ ὸ should converge to certain value which is in 

the table, for nonlinear increase the convergence is not ensured and a range of Ὕ ὸ Ὕ ὸ 

is given in the table for range of times (40-80) s 
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- Q3(tex) é value of the third term for t = tex in % of the first term 

- Q3(80s) é value of the third term for t = 80 s in % of the first term 

 

 

 

 
Fig. 9 Temperature distribution for middle (64 mm

3
) reservoir, b.c. no. 2 (0.1 K/s) after 100 s. The 

black line is the (semi) axisymmetry line, the blue line is the transversal line. 

 

 
Fig. 10 Temperature distribution for the middle reservoir, b.c. no. 2 (0.1 K/s) after 100 s ï transversal 

line in the middle (64 mm
3
) of the cylinder.  
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Fig. 11 Temperature distribution for the middle (64 mm

3
) reservoir, b.c. no. 2 (0.1 K/s) after 100 s ï 

axis of the cylinder. The apparent large osciliations in the middle part are most probably a numerical 

artifact. 

 
Fig. 12 Temperature distribution for the large reservoir (1003 mm

3
), b.c. no. 2 (0.1 K/s)and time 80 s. 

The black line is the (semi) axisymmetry line, the blue line is the transversal line. 




































































