

Primary standard for nano flow rates

Metrology for drug delivery

Dutch Metrology Institute Peter Lucas

Maurice Heemskerk, ...

Motivation

Underestimated risks Infusion technology

- In various studies infusion technology is considered a technology with underestimated risks
- Adverse incidents
 - (Head)ache
 - ...
 - Death
- Challenges
 - Setting and controlling ultra-low flow rates (< 1 ml/h)
 - Setting and controlling the outflow concentration for multi-pump infusion
 - Drug delivery device characteristics

Motivation

Low to ultra-low flow rates

Applications

- -Drug delivery for patients with fluid restrictions
- -Critical drug delivery, e.g. anesthetics, vasoactive drugs, insulin, hormone therapy
- -Drug delivery by means of implanted infusion pumps

Challenge: difficult to measure, set and control flow rate

Motivation Other

Multipump infusion

- -Effective concentration drugs (larger flow rates influence smaller ones)
- -Long start up time to reach steady flow

General characteristics

- Calibration methods not always suitable (stopwatch plus balance)
- Effective flow rate of the complete drug delivery device (pump plus accessories)
- Significant dependency on fluid and process parameters

Goals

- To develop metrological tools that can help to improve drug delivery
 - Validated primary standards for liquid flow rates from 1 nl/min to 100 ml/min
 - Reliable transfer standard for drug delivery device calibration on site
 - Calibration services for flow rates from 1 nl/min up to 100 ml/min
- Metrological assessment commercial flow meters
- Metrological assessment drug delivery devices

Development primary standard 1 to 1000 nl/min

Overview remainder presentation

- Sketch and working principles
- Design
- Theory/ traceability

Sketch set up

Dutch Metrology Institute flow, analyse & State of the st

Operation *Calibration*

Dutch Metrology Institute flow, analyse & State of the st

Development primary standard 1 to 1000 nl/min

Overview remainder presentation

- Sketch and working principles
- Design
- Theory/ traceability

Design (1)

Development primary standard 1 to 1000 nl/min

Overview remainder presentation

- Sketch and working principles
- Design
- Theory/ traceability

Dutch Metrology Institute flow, analyse & R 11 EN 12 JUNI 2013 control show

Theoretical model

Volume given by: $V = \frac{m}{\rho}$

Basics

Volume flow due to volume expansion:

$$Q = \frac{\partial V}{\partial t} = -\frac{m}{\rho^2} \frac{\partial \rho}{\partial t}$$

Working out the equations: $Q = -\frac{mk}{\rho^2} \left(\frac{\partial \rho}{\partial T}\right)$ mass, function of time т temperature gradient, k function of time Traceability through empty density, function of and full measurement ρ temperature partial derivative Traceability through the Tanaka $\frac{\partial \rho}{\partial T}$ density w.r.t. equation for density (for pure water temperature at as function of temperature) constant pressure

Theoretical model Corrections

Flow rate at the exit of the reservoir:

 $Q = -\frac{mk}{\rho^2}B$

Required corrections

- Reservoir expansion (Titanium cell)
- Cooling down fluid elements (after leaving the bath)
- Spatial variation in temperature (spatial variation thermal expansion coefficient)
- Spatial variation in temperature gradient (spatial variation expansion rate)
- COMSOL (carried out by partner NMI)

Corrections

Cooling down of fluid elements

Corrections

Spatial temperature gradient – impact volume

flow, analyse &

control show

 $V = 63 \text{ mm}^{3}$

11 EN 12 JUNI 2013

EVENEMENTENHAL

GORINCHEM

Corrections

Spatial temperature gradient – impact gradient

Temperature gradient is 0.1 K/s

Preliminary results

Flow rate for k = 0.01 K/s, reservoir vol 1000 mm³

Dutch Metrology Institute

flow, analyse & 11 EN 12 JUNI 2013 EVENEMENTENHAL control show

GORINCHEM

- Finish primary standard (August)
- Comparison between primary standards (starting September)
- Metrological assessment drug delivery devices
- Metrological assessment flow meters
- Best practice guide line
- Other applications
 - High performance Liquid Chromatography (HPLC)
 - Lab-on-a-chip (?)
 - ?

Thank you for your attention!

www.drugmetrology.com

Dutch Metrology Institute

5

Flowac, Gorinchem, 2013