

A Drug Multiplexing infusion system

Biomedical Sensor- and Devices Laboratory Lübeck, Germany

Saif Abdul-Karim, M.Sc Prof. Dr. Bodo Nestler

msgt.fh-luebeck.de

Medical errors are a leading cause of death in hospitals. About 210.000 are killed by preventable hospital errors each year in the U.S [1].

Between years 2005 and 2009, more than 56.000 infusion pump incidents were reported, including 710 deaths [3]

Introduction

Flow Setup

Aim

Optical Setup

Model design

Infusion problems

- Hygiene
- Drugs incompatibility
- Patient transportation
- Chaos and Complexity
- Delivery errors
- Human errors

Introduction

Flow Setup

Aim

Optical Setup

Model design

Delivery errors*

Introduction Aim Flow Setup Optical Setup Model design Conclusions

Examination of a multi infusion system

Better delivery

Multiplex system

Introduction Aim Flow Setup Optical Setup Model design Conclusions

Questions / tasks

Separation by means of gas bubbles (CO_2 or air) Cleaning the inner surface size of the bubbles as a function of the time t or the position x along the tube

Accuracy of the volume of the separated units Reproducibility of a liquid volume Optimized size of the separated units

Compatibility of different drugs Contamination of the following volumes behind a separation bubble

Introduction

Aim Flow Setup

Optical Setup

Drug multiplexing test bench - flow

Introduction

Flow Setup

Aim

Optical Setup

Model design

boundary conditions 1

Flow range: Max pressure: Length of the tube: Max. Gas CO_2 dosage:

0.5 ml/min - 60 mL/min (= 3.6 L/h = 86 L/d)1000 hPa 1.5 m 300 ml *

Radius of the tube: Volume of the tube: Fill time by flow min: t = 144 sFill time by flow max:

R = 0.5 mmV = 1.2 mLt = 1.2 s

Volume of a 1mm gas bubble V = 800 nL

* Department of Radiology, University Hospitals Gasthuisberg, Leuven, Belgium.

Introduction

Aim Flow Setup **Optical Setup**

Model design

Bubble size as a function of the position

Dissolving CO_2 in water And Boyle Mariotte: pV = const. (T=const.)

during the flow

Result: The length of the bubble will be reduced to 30% along the tube

Introduction

Aim Flow Setup

Optical Setup

Model design

boundary conditions 2

Flow range: Max pressure: Length of the tube: Max. Gas CO₂ dosage: 0.05 ml/min - 6 mL/min (= 8.6 L/d) 1000 hPa 1.5 m 300 ml *

Radius of the tube: Volume of the tube: Fill time by flow min: Fill time by flow max: R = 0.25 mm V = 0.3 mL t = 360 s t = 3 s

Volume of a 1mm long gas bubble VB = 200 nL

Introduction

Model design

Quantitative and qualitative measuring equipments

Introduction

Flow Setup

Aim

Optical Setup

Model design

Model of Drug Multiplexing

- Compact module
- Patient's side
- Mobile

Aim

Model design

Drug Multiplexing

\odot	$\overline{\mathfrak{S}}$
Hygiene	Pulsated dosing
Drugs incompatibility reactions	(Restricted Performance with filter)
Patient transportation	Separation by gas bubbles
Chaos and Complexity	
Delivery errors	
Human errors	
Better flow and concentration control	

Introduction

Optical Setup

Typical flow rates at clinics? Mimics clinic conditions Reliable

A mobile delivery station helps to reduce preventable infusion errors.

