

5º Encontro Nacional SPMET 2012

DESENVOLVIMENTO DE UM PADRÃO DE MICROCAUDAL DE FLUIDOS

Elsa Batista, Nelson Almeida, Luís Ribeiro, Eduarda Filipe,

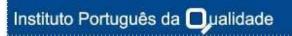
Instituto Português da Qualidade /Laboratório Central de Metrologia

João Gala, Rui Martins

Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa/DEMI

Resumo

- ✓ Objetivo e Introdução
- **✓** EMRP
- ✓ Desenvolvimento do projeto
- ✓ Modelo e cálculo de incertezas
- ✓ Resultados
- ✓ Propostas de melhoria
- ✓ Aplicações



Objetivo

Desenvolvimento de um padrão gravimétrico de medição de caudal de fluidos com capacidade entre 10 mL/min e 10 nL/min no âmbito da participação o IPQ no projecto EMRP – Metrology for Drug Delivery.

Parceria entre o Laboratório de Volume (LVO) do Instituto Português da Qualidade (IPQ), e o Departamento de Engenharia Mecânica e Industrial (DEMI) da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa (FCT/UNL).

Introdução

O caudal consiste na quantidade de fluido (massa ou volume) que atravessa uma dada área por unidade de tempo.

O método dinâmico gravimétrico de medição de caudal consiste na medição da massa de fluido obtida num determinado intervalo de tempo.

$$Q_m = \frac{m}{t}$$

Existem três elementos principais numa calibração gravimétrica de caudal:

- ➤Um gerador de fluxo
- ➤ Um dispositivo coletor
- ➤ Sistema de medição e aquisição de dados

Introdução

- ➤Com o desenvolvimento da ciência e da nanotecnologia, o limite mínimo de medição no âmbito do caudal de fluidos é cada vez mais pequeno, na ordem dos microlitros por minuto ou mesmo nanolitros por minuto.
- De forma a acompanhar a necessidade da indústria e dos laboratórios, em áreas tão diversas como a saúde, a biotecnologia, a engenharia ou a física, dando rastreabilidade às suas medições, foi identificada a necessidade, não só nacional mas também internacional, do desenvolvimento de padrões de medição de microcaudal.

EMRP

A EURAMET iniciou em 2007 um Programa Europeu de Investigação em Metrologia (EMRP).

Este programa permite a colaboração entre os Laboratórios Nacionais Metrologia, a investigação científica académica (pública ou privada) e a indústria, através de projetos de investigação conjuntos (JRP) em várias áreas onde a contribuição da Metrologia é fundamental. Uma dessa áreas

é a Saúde.

1.7

European Metrology Research Programme

▶ Programme of EURAMET

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

EMRP-MeDD

Um dos JRP do programa alvo (TP) "Metrologia para a Saúde" consiste na Metrologia para Administração de Fármacos -MeDD e tem como objetivos:

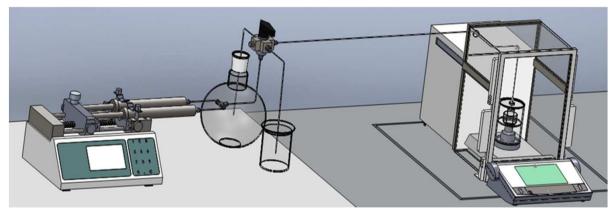
- O desenvolvimento de um padrão primário de medição de caudal entre 150 μL/min a 1 nL/min
- > A caracterização de caudalimetros
- > A caracterização de geradores de fluxo existentes no mercado, onde se inclui os equipamentos de infusão hospitalares

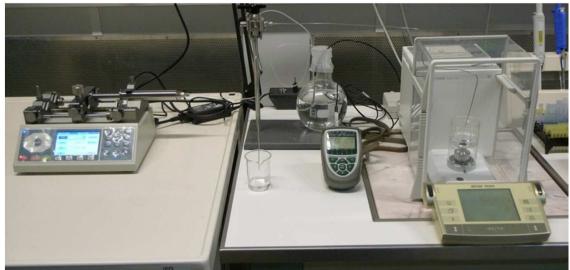
O projeto têm uma duração de 3 anos com inicio a junho de 2012.

Parceiros: CMI, CETIAT, DTI, EJPD, IPQ, VSL, UME

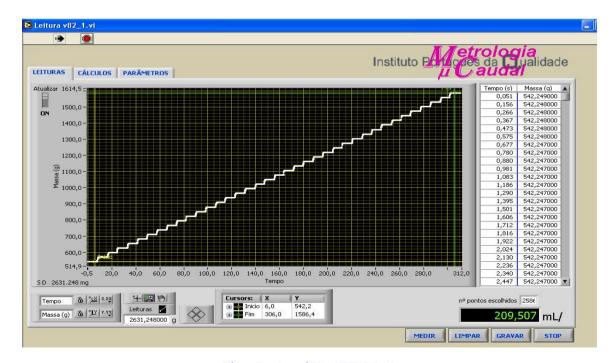
O IPQ iniciou em abril de 2012 o desenvolvimento de um padrão gravimétrico de microcaudal.

Parâmetros de estudo do projeto


- ➤ Geração de fluxo
- ➤ Influências térmicas, absorção e fugas
- **≻**Evaporação
- ➤ Efeitos de capilaridade ou tensão superficial
- ► Contaminação ou bolhas de ar na água utilizada
- ➤ Medição do tempo e aquisição de dados
- **≻**Balança



Montagem final



Software de aquisição de dados

Foi desenvolvido um módulo aplicacional em*LabView* para automatizar a recolha, a validação, o tratamento estatístico de dados e a determinação em "run time" dos erros e do respetivo cálculo de incertezas.

Instituto Português da ualidade

MINISTÉRIO DA ECONOMIA E DO EMPREGO

Modelo de cálculo

$$Q = \frac{1}{t_f - t_i} \left[\frac{\left(1 - \frac{\rho_A}{\rho_B}\right) I_f [1 - \gamma (T - 20)]}{\rho_w - \rho_A} - \frac{\left(1 - \frac{\rho_A}{\rho_B}\right) I_i \left[1 - \gamma (T - 20)\right]}{\rho_w - \rho_A} + \delta V_{evap} \right]$$

Q – Caudal volúmico, em mL/s

 t_f – Tempo final em segundos

 t_i – Tempo inicial em segundos

 I_f – Resultado da pesagem final, em g

 I_i – Resultado da pesagem inicial, em g

 ρ_a – Massa volúmica do ar em g/mL

 ho_b — Massa volúmica de referência das massas da balança em g/mL

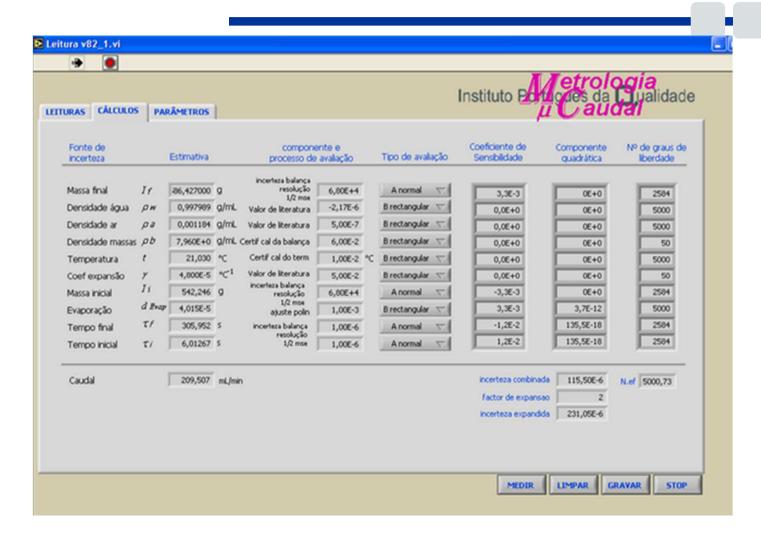
 ρ_w – Massa volúmica da água, em g/mL

T – Temperatura da água utilizada no procedimento experimental, em °C

 γ – Coeficiente de expansão térmica do material de que é feita a tubagem, /°C

δV_{evap} – Evaporação em mL

Componentes de incerteza


Fonte de Incerteza	Incerteza- padrão	Processo de avaliação	Avaliação tipo	Distribuição
Massa inicial	$u(I_i)$	1/2 mse*	А	Normal
Massa final	$u(I_l)$	1/2 mse*	Α	Normal
Massa volúmica da água	$u(\rho_w)$	Valor literatura	В	Rectangular
Massa volúmica do ar	$u(\rho_A)$	Valor literatura	В	Rectangular
Massa volúmica dos pesos	$u(\rho_B)$	Cert. calibração	В	Rectangular
Temperatura	u(T)	Cert. calibração do termómetro	В	Rectangular
Coef. de expansão térmica do padrão	υ(γ)	Valor literatura	В	Rectangular
Evaporação	$u(\delta V_{evap})$	Ajuste polinomial	В	Rectangular
Tempo inicial	$u(t_i)$	Estimativa (1μs)		Rectangular
Tempo final	$u(t_i)$	Estimativa (1μs)	В	Rectangular

*mse – mean square error

Componentes de incerteza Labview

Calculo de incertezas - GUM

Incerteza Combinada

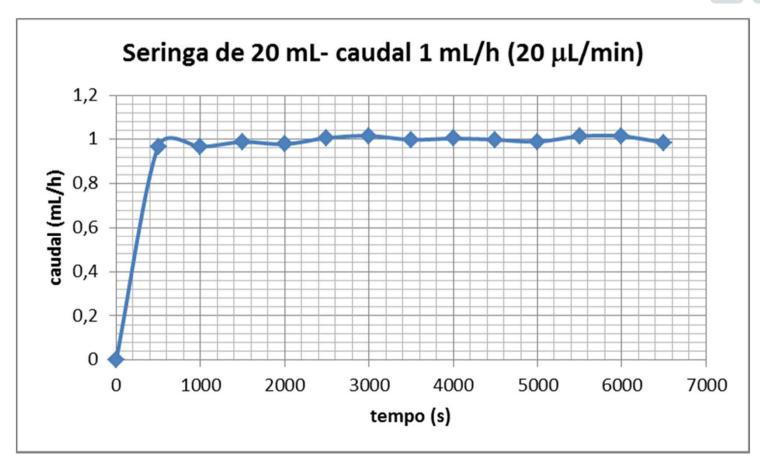
$$u(Q) = \begin{bmatrix} \left(\frac{\partial Q}{\partial I_f}\right)^2 u^2(m) + \left(\frac{\partial Q}{\partial I_i}\right)^2 u^2(m) + \left(\frac{\partial Q}{\partial \rho_w}\right)^2 u^2(\rho_w) + \left(\frac{\partial Q}{\partial \rho_a}\right)^2 u^2(\rho_A) + \left(\frac{\partial Q}{\partial \rho_b}\right)^2 u^2(\rho_B) + \left(\frac{\partial Q}{\partial \gamma}\right)^2 u^2(\gamma) \end{bmatrix}^{\frac{1}{2}} \\ + \left(\frac{\partial Q}{\partial T}\right)^2 u^2(T) + \left(\frac{\partial Q}{\partial \delta V_{evap}}\right)^2 u^2(\delta V_{evap}) + \left(\frac{\partial Q}{\partial t_f}\right)^2 u^2(t_f) + \left(\frac{\partial Q}{\partial t_i}\right)^2 u^2(t_i) \end{bmatrix}^{\frac{1}{2}}$$

Incerteza Expandida

 $U = u(Q) \times k$ k = 2 para um intervalo de confiança de 95%

Resultados para a seringa de 5 mL

	Caudal nomimal (mL/min)	Caudal obtido (mL/min)	Erro (%)	Incerteza combinada (mL/min)	Incerteza expandida (mL/min)	Incerteza expandida (%)
seringa 5 mL	0,033	0,0349	5,6153	8,7×10 ⁻⁵	1,7×10 ⁻⁴	0,50
		0,0346	4,7480	8,7×10 ⁻⁵	1,7×10 ⁻⁴	0,50
		0,0347	5,2219	8,5×10 ⁻⁵	1,7×10 ⁻⁴	0,50
	0,1	0,1050	5,0089	5,8×10 ⁻⁵	1,1×10 ⁻⁴	0,11
		0,1048	4,8249	5,7×10 ⁻⁵	1,1×10 ⁻⁴	0,11
		0,1043	4,3289	5,7×10 ⁻⁵	1,1×10 ⁻⁴	0,11
	0,33	0,3448	4,4962	1,9×10 ⁻⁴	3,8×10 ⁻⁴	0,11
		0,3439	4,2008	1,9×10 ⁻⁴	3,8×10 ⁻⁴	0,11
		0,3448	4,4762	1,9×10 ⁻⁴	3,8×10 ⁻⁴	0,11
	1	1,0286	2,8563	5,8×10 ⁻⁴	1,1×10 ⁻³	0,11
		1,0296	2,9633	5,6×10 ⁻⁴	1,1×10 ⁻³	0,11
		1,0309	3,0943	5,7×10 ⁻⁴	1,1×10 ⁻³	0,11


Resultados seringa 20 mL

	Caudal nomimal (mL/min)	Caudal obtido (mL/min)	Erro (%)	Incerteza combinada (mL/min)	Incerteza expandida (mL/min)	Incerteza expandida (%)
	0,1	0,1007	0,7018	5,8×10 ⁻⁵	1,2×10 ⁻⁴	0,12
		0,1002	0,1978	5,8×10 ⁻⁵	1,2×10 ⁻⁴	0,11
		0,1005	0,5428	5,8×10 ⁻⁵	1,2×10 ⁻⁴	0,12
	0,33	0,3331	0,9511	1,9×10 ⁻⁴	3,8×10 ⁻⁴	0,11
m L		0,3336	1,0856	1,9×10 ⁻⁴	3,8×10 ⁻⁴	0,11
		0,3319	0,5847	1,9×10 ⁻⁴	3,8×10 ⁻⁴	0,12
70	1	1,0017	0,1703	5,8×10 ⁻⁴	1,2×10 ⁻³	0,12
seringa 2		0,9982	0,1816	5,7×10 ⁻⁴	1,2×10 ⁻³	0,12
		0,9983	0,1658	5,8×10 ⁻⁴	1,2×10 ⁻³	0,12
Ser	3,3	3,2602	1,2068	1,9×10 ⁻³	3,8×10 ⁻³	0,12
6,		3,2714	0,8659	2,0×10 ⁻³	3,9×10 ⁻³	0,12
		3,2742	0,7811	1,9×10 ⁻³	3,9×10 ⁻³	0,12
	10	9,9349	0,6512	6,2×10 ⁻³	1,2×10 ⁻²	0,12
		9,9167	0,8333	6,3×10 ⁻³	1,3×10 ⁻²	0,13
		9,9796	0,2043	6,2×10 ⁻³	1,2×10 ⁻²	0,12

Resultados ao longo de 1 hora

Incerteza expandida de 0,1%

Melhoramentos

- Rastreabilidade com tempo
- Utilização de válvula automática de distribuição de caudal
- ❖Aquisição automática de dados ambientais
- Utilização de várias balanças
- Utilização de duas seringas em paralelo

Aplicações

Calibração de caudalimetros

Calibração de gerador de fluxos

Calibração de equipamentos de infusão hospitalar

OBRIGARA

ebatista@ipq.pt